搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光通信用雪崩光电二极管(APD)频率响应特性研究

莫秋燕 赵彦立

引用本文:
Citation:

光通信用雪崩光电二极管(APD)频率响应特性研究

莫秋燕, 赵彦立

Frequency responses of communication avalanche photodiodes

Mo Qiu-Yan, Zhao Yan-Li
PDF
导出引用
  • 吸收层、电荷层和倍增层分离结构雪崩光电二极管(SACM-APD),包括InP/InGaAs、InAlAs/InGaAs和Si/Ge APD是光通信领域近年来研究的热点. 本文基于电路模型,系统比较了不同外延层厚度、不同材料以及不同结构APD的频率响应特性,重点探讨Si/Ge APD吸收层厚度、光敏面大小、寄生参数等各项参数对带宽的影响,仿真结果与实际器件实验数据相符合. 本文的研究成果对SACM-APD的优化设计具有指导意义.
    In recent years, separate absorption, charge and multiplication avalanche photodiodes (SACM-APDs), including InP/InGaAs, InAlAs/InGaAs and Si/Ge APD, have drawn a lot of attention in the field of optical communication. In this paper, on the basis of the circuit model, the frequency response is studied systematically for APDs with different thicknesses of epitaxial layers, different multiplication materials and device structures. The effects of the absorption layer thickness, the dimension of the active area and the parasitic parameters on frequency response are addressed to Si/Ge APD. The simulation resuets are in good agreement with the experimental results, which indicates that the circuit model is helpful for the design optimization of APDs.
    • 基金项目: 国家高技术研究发展计划(批准号:2008AA01Z207),湖北省自然科学基金(批准号:2010CDB01606),华为公司创新研究计划(批准号:YJCB2010032NW)和教育部留学归国基金资助的课题.
    [1]

    Campbell J C, Holden W S, Qua G J, Dental A G 1985 IEEE Journal of Quantum Electronics QE-21 1743

    [2]

    Campbell J C, Johnson B C, Qua G J, Tsang W T 1989 J. Lightw. Technol. 7 778

    [3]

    Campbell J C, Tsang W T, Qua G J, Johnson B C 1988 IEEE J. Quant. Electron. 24 496

    [4]

    Lenox C, Nie H, Yuan P, Kinsey G, Homles A L Jr, Strectman B G, Campbell J C 1999 IEEE Photon. Tech. Lett. 11 1162

    [5]

    Kang Y M, Liu H D, Morse M, Paniccia Mario J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W 2008 Nature Photonics 247 1

    [6]

    Xue H Y, Xue C L, Cheng B W 2009 Chin. Phys. B 18 2542

    [7]

    El-Batawy Y M, Deen M J 2003 IEEE Trans.Electron Devices 50 790

    [8]

    El-Batawy Y M, Deen M J 2005 IEEE Trans Electron Devices 52 335

    [9]

    Banoushi A, Kardan M R, Ataee Naeini M 2005 Solid State Electron. 49 871

    [10]

    Wang G, Tokumitsu T, Hanawa I, Sato K, Kobayashi M 2002 IEEE Microw. Wireless Compon. Lett 12 378

    [11]

    Wang G, Tokumitsu T, Hanawa I, Yoneda Y, Sato K, Kobayashi M 2003 IEEE Trans. Microw. Theory Tech. 51 1227

    [12]

    Mai Y X, Wang G 2009 J. Lightw. Technol. 27 1197

    [13]

    Jiayin Wu, Wang G 2010 Journal of Lightwave Technology 28 784

    [14]

    Chen W, Liu S 1996 IEEE J. Quantum Electron 32 2105

    [15]

    Zarifkar A, Soroosh M,2004 Proc. LFNM 6th Int. Conf. Laser and Fiber-Optical Networks Modeling,Sep. 6—9 213

    [16]

    Dai D X, Chen H W, Bowers J E, Kang Y M, Morse M, Paniccia M J 2010 Phys. Status Solidi C 7 2532

    [17]

    Dai D X, Chen H W, Bowers J E, Kang Y M, Morse M, Paniccia M J 2009 Optics Eexpress 17 16549

    [18]

    Oppenheim V, Willsky A S, Young I T 1983 Signals and Systems, 1st ed., Englewood Cliffs, NJ: Prentice Hall

    [19]

    Irwin J D 2002 Basic Engineering Circuit Analysis. 1st ed. (New York: Wiley) p274

    [20]

    Kang Y, Zadka M, Litski S, Sarid G, Morse M, Paniccia M J, Kuo Y H, Bowers J, Beling A, Liu H D, McIntosh D C, Campbell J C, Pauchard A 2008 Optics Express 16 9365

    [21]

    Ning D, Wang S, Zheng X G, Li X, Ning L, Campbell J C, Chad W, Coldren L A 2005 IEEE J. Quantum Electron 41 568

    [22]

    kim D S, Lee S Y, Lee J H, Oh G S, Kim N J, Lee J W, Kim A S, Sin Y K 1996 Conf. Proc. IEEE Laser and Electro-Optics society Annu. Meet. 2 332

    [23]

    Nie H, Anselm K A, Lenox C, Yuan P, Hu C, Kinsey G, Streetman B G, Campbell J C 1998 IEEE Photonics Technology Letters 10 409

    [24]

    Kinsey G S, Campbell J C, Dentai A G 2001 IEEE Photonics Technology Lletters 13 842

    [25]

    Zhu N H, Liu Y, Zhang S J, Wen J M 2006 Microwave Opt. Tech. Lett. 48 76

  • [1]

    Campbell J C, Holden W S, Qua G J, Dental A G 1985 IEEE Journal of Quantum Electronics QE-21 1743

    [2]

    Campbell J C, Johnson B C, Qua G J, Tsang W T 1989 J. Lightw. Technol. 7 778

    [3]

    Campbell J C, Tsang W T, Qua G J, Johnson B C 1988 IEEE J. Quant. Electron. 24 496

    [4]

    Lenox C, Nie H, Yuan P, Kinsey G, Homles A L Jr, Strectman B G, Campbell J C 1999 IEEE Photon. Tech. Lett. 11 1162

    [5]

    Kang Y M, Liu H D, Morse M, Paniccia Mario J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W 2008 Nature Photonics 247 1

    [6]

    Xue H Y, Xue C L, Cheng B W 2009 Chin. Phys. B 18 2542

    [7]

    El-Batawy Y M, Deen M J 2003 IEEE Trans.Electron Devices 50 790

    [8]

    El-Batawy Y M, Deen M J 2005 IEEE Trans Electron Devices 52 335

    [9]

    Banoushi A, Kardan M R, Ataee Naeini M 2005 Solid State Electron. 49 871

    [10]

    Wang G, Tokumitsu T, Hanawa I, Sato K, Kobayashi M 2002 IEEE Microw. Wireless Compon. Lett 12 378

    [11]

    Wang G, Tokumitsu T, Hanawa I, Yoneda Y, Sato K, Kobayashi M 2003 IEEE Trans. Microw. Theory Tech. 51 1227

    [12]

    Mai Y X, Wang G 2009 J. Lightw. Technol. 27 1197

    [13]

    Jiayin Wu, Wang G 2010 Journal of Lightwave Technology 28 784

    [14]

    Chen W, Liu S 1996 IEEE J. Quantum Electron 32 2105

    [15]

    Zarifkar A, Soroosh M,2004 Proc. LFNM 6th Int. Conf. Laser and Fiber-Optical Networks Modeling,Sep. 6—9 213

    [16]

    Dai D X, Chen H W, Bowers J E, Kang Y M, Morse M, Paniccia M J 2010 Phys. Status Solidi C 7 2532

    [17]

    Dai D X, Chen H W, Bowers J E, Kang Y M, Morse M, Paniccia M J 2009 Optics Eexpress 17 16549

    [18]

    Oppenheim V, Willsky A S, Young I T 1983 Signals and Systems, 1st ed., Englewood Cliffs, NJ: Prentice Hall

    [19]

    Irwin J D 2002 Basic Engineering Circuit Analysis. 1st ed. (New York: Wiley) p274

    [20]

    Kang Y, Zadka M, Litski S, Sarid G, Morse M, Paniccia M J, Kuo Y H, Bowers J, Beling A, Liu H D, McIntosh D C, Campbell J C, Pauchard A 2008 Optics Express 16 9365

    [21]

    Ning D, Wang S, Zheng X G, Li X, Ning L, Campbell J C, Chad W, Coldren L A 2005 IEEE J. Quantum Electron 41 568

    [22]

    kim D S, Lee S Y, Lee J H, Oh G S, Kim N J, Lee J W, Kim A S, Sin Y K 1996 Conf. Proc. IEEE Laser and Electro-Optics society Annu. Meet. 2 332

    [23]

    Nie H, Anselm K A, Lenox C, Yuan P, Hu C, Kinsey G, Streetman B G, Campbell J C 1998 IEEE Photonics Technology Letters 10 409

    [24]

    Kinsey G S, Campbell J C, Dentai A G 2001 IEEE Photonics Technology Lletters 13 842

    [25]

    Zhu N H, Liu Y, Zhang S J, Wen J M 2006 Microwave Opt. Tech. Lett. 48 76

  • [1] 索鼎杰, 纪镇祥, 黄晓雲, 靳杰, 闫天翼. 非线性声场下包膜微泡动力学与频率响应分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231898
    [2] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟. 物理学报, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [3] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [4] 王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉. Mg2Si/Si雪崩光电二极管的设计与模拟. 物理学报, 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [5] 赵宇婷, 李迎松, 杨国辉. 基于电路模拟吸收体的宽带吸波型频率选择表面设计. 物理学报, 2020, 69(19): 198101. doi: 10.7498/aps.69.20200641
    [6] 吴泽, 范洪义. 矩阵形式的不变本征算符方法以及几种介观电路的本征频率. 物理学报, 2019, 68(22): 220301. doi: 10.7498/aps.68.20190651
    [7] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [8] 赵学童, 廖瑞金, 李建英, 王飞鹏. 直流老化对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [9] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [10] 罗佳奇, 刘锋. 基于梯度响应面模型的优化设计. 物理学报, 2013, 62(19): 190201. doi: 10.7498/aps.62.190201
    [11] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [12] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [13] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [14] 周小方. 介观LC电路零状态响应的完全解. 物理学报, 2007, 56(10): 6019-6022. doi: 10.7498/aps.56.6019
    [15] 李国俊, 康学亮, 李永平, 吕 超, 范正修, 丁 磊, 隋 展. 反射型磁光多层膜隔离器的频率响应及宽容性研究. 物理学报, 2007, 56(5): 2945-2950. doi: 10.7498/aps.56.2945
    [16] 邓新华, 刘念华, 刘根泉. 单负材料光子晶体异质结构的频率响应. 物理学报, 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
    [17] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [18] 李宝山, 朱志刚, 李国荣, 殷庆瑞, 丁爱丽. 铌锰锆钛酸铅铁电陶瓷电滞回线的温度和频率响应. 物理学报, 2005, 54(2): 939-943. doi: 10.7498/aps.54.939
    [19] 俞文海, 丁屹. 固体电解质与电极之间界面的分数维模型及其频率响应. 物理学报, 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
    [20] 徐锋, 刘辽. 瞬时响应的粒子探测器模型. 物理学报, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
计量
  • 文章访问数:  10977
  • PDF下载量:  1522
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-20
  • 修回日期:  2010-09-02
  • 刊出日期:  2011-07-15

/

返回文章
返回