-
高灵敏度的红外探测系统对于远距离探测有巨大的潜力, 但光学系统内部的噪声会抑制探测系统的信噪比, 从而降低探测灵敏度与探测距离. 本文基于红外超导纳米线单光子探测器, 设计了一个工作在中红外波段的光学系统, 构建了红外光学系统自发辐射计算模型, 理论分析了红外光学系统的信噪比和噪声特性. 首次提出了利用高性能超导单光子探测器精确表征红外光学系统的微弱背景辐射光信号, 为优化设计红外系统提供了依据. 并且基于超导单光子探测器的光子计数能力, 研究了光学系统的背景辐射对红外探测系统性能的影响, 并优化了光学系统的性能. 实验结果表明, 超导单光子探测器对于分析红外光学系统具有较高的灵敏度, 最小可分辨移动距离为2.74 × 10–2 mm, 在黑体温度为100 ℃时, 光子计数率提高了6.4 × 104 cps (1 cps = 1 cycle per second), 光学系统的耦合效率提升了97%; 在黑体温度为102 ℃时, 光子计数率提高了9.1 × 104 cps, 光学系统的耦合效率提升了114%, 降低了杂散辐射对探测系统的影响, 同等条件下系统信噪比提升2.7倍, 对于超导红外探测系统的应用研究具有重要意义.Superconducting nanowire single-photon detector is a kind of refrigerated photon-counting detector with high performance, which can detect extremely weak signals. The noise of optical system is an important factor limiting the sensitivity of infrared superconducting nanowire single-photon detector. In order to improve the sensitivity of infrared detection system, the calculation model of signal-to-noise ratio and background radiation of infrared optical system based on superconducting single photon detector is established and the source of noise in optical system and the radiation emission of black body are analyzed theoretically. The noise characteristics of infrared optical system are quantitatively analyzed by photon counting capability of superconducting nanowire single-photon detector, and the relationship between the photon count rate and temperature under a small temperature difference is explored. An optical system based on infrared superconducting single photon detector is designed. The designed optical system improves the infrared photon coupling efficiency and the signal-to-noise ratio of the superconducting detection system, which are verified theoretically and experimentally , thus reducing the influence of background radiation on the detection system. The results show that the superconducting single-photon detector has high sensitivity to the analysis of the infrared optical system, and the minimum resolved movement distance is 2.74 × 10–2 mm. The physical coupling efficiency of the optical system and the photon count rate of the detection system are improved by optimizing the optical system, and the signal-to-noise ratio of the system increases by 2.7 times under the same conditions. It is expected that this infrared superconducting nanowire single-photon detector can be used in finer and higher precision detection field.
-
Keywords:
- infrared optic system /
- superconducting nanowire single-photon detector /
- sensitivity /
- signal-to-noise ratio
[1] Michalczewski K, Martyniuk P, Kubiszyn L, Wu C H, Wu Y R, Jurenczyk J, Rogalski A, Piotrowski J 2019 IEEE Elec. Dev. Lett. 40 1396Google Scholar
[2] Miki S, Miyajima S, China F, Yabuno M, Terai H 2021 Opt. Lett. 46 6015Google Scholar
[3] Xu R Y, Li Y C, Zheng F, Zhu G H, Kang L, Zhang L B, Jia X Q, Tu X C, Zhao Q Y, Jin B B, Xu W W, Chen J, Wu P H 2018 Opt. Express 26 3947Google Scholar
[4] Ryzhii V, Ryzhii M, Otsuji T, Leiman V, Mitin V, Shur M S 2021 J. Appl. Phys. 129 214503Google Scholar
[5] Li C Y, Gu Z, Yao J, Kong H, Zan M H, Dong W F, Zhou L Q, Tang Y G 2019 Appl. Phys. Lett. 114 183505Google Scholar
[6] Kimata M 2018 Sensor. Mater. 30 1221Google Scholar
[7] Rogalski M, Cywinska M, Ahmad A, Patorski K, Mico V, Ahluwalia B S, Trusiak M 2022 Opt. Lett. 47 5793Google Scholar
[8] Yang L, Liu H J, Dai S X, Lin C G 2023 Opt. Lett. 48 1431Google Scholar
[9] Wu J, Li D J, Zheng H, Sun Y L, Cui A J, Gao J H, Zhou K, Liu B 2022 Appl. Opt. 61 10080Google Scholar
[10] Bessho T, Ikeda Y, Yin W 2022 Phys. Rev. D 106 095025Google Scholar
[11] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨 2022 物理学报 71 248502Google Scholar
Chen Q, Dai Y, Li F Y, Zhang B, Li H C, Tan J R, Wang X H, He G L, Fei Y, Wang H, Zhang L B, Kang L, Chen J, Wu P H 2022 Acta Phys. Sin. 71 248502Google Scholar
[12] 张立帅, 吴平 2016 红外 37 33Google Scholar
Zhang L S, Wu P 2016 Infrared 37 33Google Scholar
[13] 杨宗耀, 张靖周, 单勇 2023 航空学报 44 111Google Scholar
Yang Z Y, Zhang J Z, Shan Y 2023 Acta Aeronaut. Astron. Sin. 44 111Google Scholar
[14] 贾天石, 崔坤, 薛玉龙, 苏晓锋 2017 激光与红外 47 1373Google Scholar
Jia T S, Cui K, Xue Y L, Su X F 2017 Laser Infr 47 1373Google Scholar
[15] 唐国良, 李春来, 刘世界, 徐睿, 徐艳, 袁立银, 王建宇 2021 红外与毫米波学报 40 847Google Scholar
Tang G L, Li C L, Liu S J, Xu R, Xu Y, Yuan L Y, Wang J Y 2021 J. Infrared Millim. Waves 40 847Google Scholar
[16] 马宁, 刘莎, 李江勇 2017 激光与红外 47 717Google Scholar
Ma N, Liu S, Li J Y Laser 2017 Infrared 47 717Google Scholar
[17] Li J, Kirkwood R A, Baker L J, Bosworth D, Erotokritou K, Banerjee A, Heath R M, Natarajan C M, Barber Z H, Sorel M, Hadfield R H 2016 Opt. Express 24 13931Google Scholar
[18] Allmaras J P, Wollman E E, Beyer A D, Briggs R M, Korzh B A, Bumble B, Shaw M D 2020 Nano Lett. 20 2163Google Scholar
[19] Fardoost A, Wen H, Liu H, Vanani F G, Li G 2019 Appl. Opt. 58 D34Google Scholar
[20] 张秀兰, 刘恒, 余海军, 张文海 2011 物理学报 60 040303Google Scholar
Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys. Sin. 60 040303Google Scholar
[21] Wang X Z, Yin J F, Zhang K, Yan J 2019 Optik 185 405Google Scholar
[22] Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar
-
图 4 (a) 100 ℃温度下, 2 mm移动范围内nP的变化情况(nP1为未移动时的光子计数率, nP2为水平移动2 mm后的光子计数率); (b) 102 ℃温度下, 2 mm移动范围内nP的变化情况(nP3为未移动时的光子计数率, nP4为水平移动2 mm后的光子计数率); (c) 100 ℃温度下, 使用耦合透镜前后的nP (nP5为未使用聚焦透镜时的光子计数率, nP6为使用聚焦透镜时的光子计数率); (d) 102 ℃温度下, 使用耦合透镜前后的nP (nP7为未使用聚焦透镜时的光子计数率, nP8为使用聚焦透镜时的光子计数率). 图(a)—(d)中实线对应横坐标为各nP对应的180 s内的均值, τ为对应的标准差
Fig. 4. (a) At 100 ℃, the changes of nP within the 2 mm moving range at 100 ℃ (nP2 is the photon count rate without moving, nP1 is the photon count rate after moving 2 mm horizontally); (b) changes of nP within the 2 mm moving range at 102 ℃ (nP4 is the photon count rate without moving, nP3 is the photon count rate after moving 2 mm horizontally); (c) nP before and after using the coupled lens at 100 ℃ (nP5 is the photon count rate when the focusing lens is not used, nP6 is the photon count rate when the focusing lens is used); (d) nP before and after the coupling lens is used at 102 ℃ (nP7 is the photon count rate when the focusing lens is not used, nP8 is the photon count rate when the focusing lens is used). In panels (a)–(d), the horizontal coordinate corresponding to the solid line is the mean value of each nP within 180 s, and τ is the corresponding standard deviation.
-
[1] Michalczewski K, Martyniuk P, Kubiszyn L, Wu C H, Wu Y R, Jurenczyk J, Rogalski A, Piotrowski J 2019 IEEE Elec. Dev. Lett. 40 1396Google Scholar
[2] Miki S, Miyajima S, China F, Yabuno M, Terai H 2021 Opt. Lett. 46 6015Google Scholar
[3] Xu R Y, Li Y C, Zheng F, Zhu G H, Kang L, Zhang L B, Jia X Q, Tu X C, Zhao Q Y, Jin B B, Xu W W, Chen J, Wu P H 2018 Opt. Express 26 3947Google Scholar
[4] Ryzhii V, Ryzhii M, Otsuji T, Leiman V, Mitin V, Shur M S 2021 J. Appl. Phys. 129 214503Google Scholar
[5] Li C Y, Gu Z, Yao J, Kong H, Zan M H, Dong W F, Zhou L Q, Tang Y G 2019 Appl. Phys. Lett. 114 183505Google Scholar
[6] Kimata M 2018 Sensor. Mater. 30 1221Google Scholar
[7] Rogalski M, Cywinska M, Ahmad A, Patorski K, Mico V, Ahluwalia B S, Trusiak M 2022 Opt. Lett. 47 5793Google Scholar
[8] Yang L, Liu H J, Dai S X, Lin C G 2023 Opt. Lett. 48 1431Google Scholar
[9] Wu J, Li D J, Zheng H, Sun Y L, Cui A J, Gao J H, Zhou K, Liu B 2022 Appl. Opt. 61 10080Google Scholar
[10] Bessho T, Ikeda Y, Yin W 2022 Phys. Rev. D 106 095025Google Scholar
[11] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨 2022 物理学报 71 248502Google Scholar
Chen Q, Dai Y, Li F Y, Zhang B, Li H C, Tan J R, Wang X H, He G L, Fei Y, Wang H, Zhang L B, Kang L, Chen J, Wu P H 2022 Acta Phys. Sin. 71 248502Google Scholar
[12] 张立帅, 吴平 2016 红外 37 33Google Scholar
Zhang L S, Wu P 2016 Infrared 37 33Google Scholar
[13] 杨宗耀, 张靖周, 单勇 2023 航空学报 44 111Google Scholar
Yang Z Y, Zhang J Z, Shan Y 2023 Acta Aeronaut. Astron. Sin. 44 111Google Scholar
[14] 贾天石, 崔坤, 薛玉龙, 苏晓锋 2017 激光与红外 47 1373Google Scholar
Jia T S, Cui K, Xue Y L, Su X F 2017 Laser Infr 47 1373Google Scholar
[15] 唐国良, 李春来, 刘世界, 徐睿, 徐艳, 袁立银, 王建宇 2021 红外与毫米波学报 40 847Google Scholar
Tang G L, Li C L, Liu S J, Xu R, Xu Y, Yuan L Y, Wang J Y 2021 J. Infrared Millim. Waves 40 847Google Scholar
[16] 马宁, 刘莎, 李江勇 2017 激光与红外 47 717Google Scholar
Ma N, Liu S, Li J Y Laser 2017 Infrared 47 717Google Scholar
[17] Li J, Kirkwood R A, Baker L J, Bosworth D, Erotokritou K, Banerjee A, Heath R M, Natarajan C M, Barber Z H, Sorel M, Hadfield R H 2016 Opt. Express 24 13931Google Scholar
[18] Allmaras J P, Wollman E E, Beyer A D, Briggs R M, Korzh B A, Bumble B, Shaw M D 2020 Nano Lett. 20 2163Google Scholar
[19] Fardoost A, Wen H, Liu H, Vanani F G, Li G 2019 Appl. Opt. 58 D34Google Scholar
[20] 张秀兰, 刘恒, 余海军, 张文海 2011 物理学报 60 040303Google Scholar
Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys. Sin. 60 040303Google Scholar
[21] Wang X Z, Yin J F, Zhang K, Yan J 2019 Optik 185 405Google Scholar
[22] Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar
计量
- 文章访问数: 2017
- PDF下载量: 85
- 被引次数: 0