搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超导单光子探测器的红外光学系统噪声分析和优化

周飞 陈奇 刘浩 戴越 魏晨 袁杭 王昊 涂学凑 康琳 贾小氢 赵清源 陈健 张蜡宝 吴培亨

引用本文:
Citation:

基于超导单光子探测器的红外光学系统噪声分析和优化

周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨

Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector

Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng
PDF
HTML
导出引用
  • 高灵敏度的红外探测系统对于远距离探测有巨大的潜力, 但光学系统内部的噪声会抑制探测系统的信噪比, 从而降低探测灵敏度与探测距离. 本文基于红外超导纳米线单光子探测器, 设计了一个工作在中红外波段的光学系统, 构建了红外光学系统自发辐射计算模型, 理论分析了红外光学系统的信噪比和噪声特性. 首次提出了利用高性能超导单光子探测器精确表征红外光学系统的微弱背景辐射光信号, 为优化设计红外系统提供了依据. 并且基于超导单光子探测器的光子计数能力, 研究了光学系统的背景辐射对红外探测系统性能的影响, 并优化了光学系统的性能. 实验结果表明, 超导单光子探测器对于分析红外光学系统具有较高的灵敏度, 最小可分辨移动距离为2.74 × 10–2 mm, 在黑体温度为100 ℃时, 光子计数率提高了6.4 × 104 cps (1 cps = 1 cycle per second), 光学系统的耦合效率提升了97%; 在黑体温度为102 ℃时, 光子计数率提高了9.1 × 104 cps, 光学系统的耦合效率提升了114%, 降低了杂散辐射对探测系统的影响, 同等条件下系统信噪比提升2.7倍, 对于超导红外探测系统的应用研究具有重要意义.
    Superconducting nanowire single-photon detector is a kind of refrigerated photon-counting detector with high performance, which can detect extremely weak signals. The noise of optical system is an important factor limiting the sensitivity of infrared superconducting nanowire single-photon detector. In order to improve the sensitivity of infrared detection system, the calculation model of signal-to-noise ratio and background radiation of infrared optical system based on superconducting single photon detector is established and the source of noise in optical system and the radiation emission of black body are analyzed theoretically. The noise characteristics of infrared optical system are quantitatively analyzed by photon counting capability of superconducting nanowire single-photon detector, and the relationship between the photon count rate and temperature under a small temperature difference is explored. An optical system based on infrared superconducting single photon detector is designed. The designed optical system improves the infrared photon coupling efficiency and the signal-to-noise ratio of the superconducting detection system, which are verified theoretically and experimentally , thus reducing the influence of background radiation on the detection system. The results show that the superconducting single-photon detector has high sensitivity to the analysis of the infrared optical system, and the minimum resolved movement distance is 2.74 × 10–2 mm. The physical coupling efficiency of the optical system and the photon count rate of the detection system are improved by optimizing the optical system, and the signal-to-noise ratio of the system increases by 2.7 times under the same conditions. It is expected that this infrared superconducting nanowire single-photon detector can be used in finer and higher precision detection field.
      通信作者: 张蜡宝, lzhang@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12033002, 62101240, 62071218, 6207121461801206, 11227904)、国家重点研发计划(批准号: 2017YFA0304002)和江苏省自然科学基金(批准号: BK202010177)资助的课题.
      Corresponding author: Zhang La-Bao, lzhang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033002, 62101240, 62071218, 6207121461801206, 11227904), the National Key R&D Program of China (Grant No. 2017YFA0304002), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK202010177).
    [1]

    Michalczewski K, Martyniuk P, Kubiszyn L, Wu C H, Wu Y R, Jurenczyk J, Rogalski A, Piotrowski J 2019 IEEE Elec. Dev. Lett. 40 1396Google Scholar

    [2]

    Miki S, Miyajima S, China F, Yabuno M, Terai H 2021 Opt. Lett. 46 6015Google Scholar

    [3]

    Xu R Y, Li Y C, Zheng F, Zhu G H, Kang L, Zhang L B, Jia X Q, Tu X C, Zhao Q Y, Jin B B, Xu W W, Chen J, Wu P H 2018 Opt. Express 26 3947Google Scholar

    [4]

    Ryzhii V, Ryzhii M, Otsuji T, Leiman V, Mitin V, Shur M S 2021 J. Appl. Phys. 129 214503Google Scholar

    [5]

    Li C Y, Gu Z, Yao J, Kong H, Zan M H, Dong W F, Zhou L Q, Tang Y G 2019 Appl. Phys. Lett. 114 183505Google Scholar

    [6]

    Kimata M 2018 Sensor. Mater. 30 1221Google Scholar

    [7]

    Rogalski M, Cywinska M, Ahmad A, Patorski K, Mico V, Ahluwalia B S, Trusiak M 2022 Opt. Lett. 47 5793Google Scholar

    [8]

    Yang L, Liu H J, Dai S X, Lin C G 2023 Opt. Lett. 48 1431Google Scholar

    [9]

    Wu J, Li D J, Zheng H, Sun Y L, Cui A J, Gao J H, Zhou K, Liu B 2022 Appl. Opt. 61 10080Google Scholar

    [10]

    Bessho T, Ikeda Y, Yin W 2022 Phys. Rev. D 106 095025Google Scholar

    [11]

    陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨 2022 物理学报 71 248502Google Scholar

    Chen Q, Dai Y, Li F Y, Zhang B, Li H C, Tan J R, Wang X H, He G L, Fei Y, Wang H, Zhang L B, Kang L, Chen J, Wu P H 2022 Acta Phys. Sin. 71 248502Google Scholar

    [12]

    张立帅, 吴平 2016 红外 37 33Google Scholar

    Zhang L S, Wu P 2016 Infrared 37 33Google Scholar

    [13]

    杨宗耀, 张靖周, 单勇 2023 航空学报 44 111Google Scholar

    Yang Z Y, Zhang J Z, Shan Y 2023 Acta Aeronaut. Astron. Sin. 44 111Google Scholar

    [14]

    贾天石, 崔坤, 薛玉龙, 苏晓锋 2017 激光与红外 47 1373Google Scholar

    Jia T S, Cui K, Xue Y L, Su X F 2017 Laser Infr 47 1373Google Scholar

    [15]

    唐国良, 李春来, 刘世界, 徐睿, 徐艳, 袁立银, 王建宇 2021 红外与毫米波学报 40 847Google Scholar

    Tang G L, Li C L, Liu S J, Xu R, Xu Y, Yuan L Y, Wang J Y 2021 J. Infrared Millim. Waves 40 847Google Scholar

    [16]

    马宁, 刘莎, 李江勇 2017 激光与红外 47 717Google Scholar

    Ma N, Liu S, Li J Y Laser 2017 Infrared 47 717Google Scholar

    [17]

    Li J, Kirkwood R A, Baker L J, Bosworth D, Erotokritou K, Banerjee A, Heath R M, Natarajan C M, Barber Z H, Sorel M, Hadfield R H 2016 Opt. Express 24 13931Google Scholar

    [18]

    Allmaras J P, Wollman E E, Beyer A D, Briggs R M, Korzh B A, Bumble B, Shaw M D 2020 Nano Lett. 20 2163Google Scholar

    [19]

    Fardoost A, Wen H, Liu H, Vanani F G, Li G 2019 Appl. Opt. 58 D34Google Scholar

    [20]

    张秀兰, 刘恒, 余海军, 张文海 2011 物理学报 60 040303Google Scholar

    Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys. Sin. 60 040303Google Scholar

    [21]

    Wang X Z, Yin J F, Zhang K, Yan J 2019 Optik 185 405Google Scholar

    [22]

    Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar

  • 图 1  (a) 红外SNSPD的测量系统结构示意图; (b) 红外测量系统实物图

    Fig. 1.  (a) Schematic measurement system diagram of infrared SNSPD; (b) the optical part of an infrared measurement system.

    图 2  (a) SNSPD的SEM观测图(纳米线的线宽为30 nm); (b) SNSPD的电流-电压特性曲线

    Fig. 2.  (a) SEM image of SNSPD (the line width of the nanowire is 30 nm); (b) I-V characteristic curve for measurement of SNSPD.

    图 3  (a) 探测系统的nB (200 s内的标准差为454 cps); (b) 不同温度下的nP和ΔnP

    Fig. 3.  (a) nB of the infrared optical system (the standard deviation in 200 s is 454 cps); (b) nP and ΔnP on different temperature.

    图 4  (a) 100 ℃温度下, 2 mm移动范围内nP的变化情况(nP1为未移动时的光子计数率, nP2为水平移动2 mm后的光子计数率); (b) 102 ℃温度下, 2 mm移动范围内nP的变化情况(nP3为未移动时的光子计数率, nP4为水平移动2 mm后的光子计数率); (c) 100 ℃温度下, 使用耦合透镜前后的nP (nP5为未使用聚焦透镜时的光子计数率, nP6为使用聚焦透镜时的光子计数率); (d) 102 ℃温度下, 使用耦合透镜前后的nP (nP7为未使用聚焦透镜时的光子计数率, nP8为使用聚焦透镜时的光子计数率). 图(a)—(d)中实线对应横坐标为各nP对应的180 s内的均值, τ为对应的标准差

    Fig. 4.  (a) At 100 ℃, the changes of nP within the 2 mm moving range at 100 ℃ (nP2 is the photon count rate without moving, nP1 is the photon count rate after moving 2 mm horizontally); (b) changes of nP within the 2 mm moving range at 102 ℃ (nP4 is the photon count rate without moving, nP3 is the photon count rate after moving 2 mm horizontally); (c) nP before and after using the coupled lens at 100 ℃ (nP5 is the photon count rate when the focusing lens is not used, nP6 is the photon count rate when the focusing lens is used); (d) nP before and after the coupling lens is used at 102 ℃ (nP7 is the photon count rate when the focusing lens is not used, nP8 is the photon count rate when the focusing lens is used). In panels (a)–(d), the horizontal coordinate corresponding to the solid line is the mean value of each nP within 180 s, and τ is the corresponding standard deviation.

  • [1]

    Michalczewski K, Martyniuk P, Kubiszyn L, Wu C H, Wu Y R, Jurenczyk J, Rogalski A, Piotrowski J 2019 IEEE Elec. Dev. Lett. 40 1396Google Scholar

    [2]

    Miki S, Miyajima S, China F, Yabuno M, Terai H 2021 Opt. Lett. 46 6015Google Scholar

    [3]

    Xu R Y, Li Y C, Zheng F, Zhu G H, Kang L, Zhang L B, Jia X Q, Tu X C, Zhao Q Y, Jin B B, Xu W W, Chen J, Wu P H 2018 Opt. Express 26 3947Google Scholar

    [4]

    Ryzhii V, Ryzhii M, Otsuji T, Leiman V, Mitin V, Shur M S 2021 J. Appl. Phys. 129 214503Google Scholar

    [5]

    Li C Y, Gu Z, Yao J, Kong H, Zan M H, Dong W F, Zhou L Q, Tang Y G 2019 Appl. Phys. Lett. 114 183505Google Scholar

    [6]

    Kimata M 2018 Sensor. Mater. 30 1221Google Scholar

    [7]

    Rogalski M, Cywinska M, Ahmad A, Patorski K, Mico V, Ahluwalia B S, Trusiak M 2022 Opt. Lett. 47 5793Google Scholar

    [8]

    Yang L, Liu H J, Dai S X, Lin C G 2023 Opt. Lett. 48 1431Google Scholar

    [9]

    Wu J, Li D J, Zheng H, Sun Y L, Cui A J, Gao J H, Zhou K, Liu B 2022 Appl. Opt. 61 10080Google Scholar

    [10]

    Bessho T, Ikeda Y, Yin W 2022 Phys. Rev. D 106 095025Google Scholar

    [11]

    陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨 2022 物理学报 71 248502Google Scholar

    Chen Q, Dai Y, Li F Y, Zhang B, Li H C, Tan J R, Wang X H, He G L, Fei Y, Wang H, Zhang L B, Kang L, Chen J, Wu P H 2022 Acta Phys. Sin. 71 248502Google Scholar

    [12]

    张立帅, 吴平 2016 红外 37 33Google Scholar

    Zhang L S, Wu P 2016 Infrared 37 33Google Scholar

    [13]

    杨宗耀, 张靖周, 单勇 2023 航空学报 44 111Google Scholar

    Yang Z Y, Zhang J Z, Shan Y 2023 Acta Aeronaut. Astron. Sin. 44 111Google Scholar

    [14]

    贾天石, 崔坤, 薛玉龙, 苏晓锋 2017 激光与红外 47 1373Google Scholar

    Jia T S, Cui K, Xue Y L, Su X F 2017 Laser Infr 47 1373Google Scholar

    [15]

    唐国良, 李春来, 刘世界, 徐睿, 徐艳, 袁立银, 王建宇 2021 红外与毫米波学报 40 847Google Scholar

    Tang G L, Li C L, Liu S J, Xu R, Xu Y, Yuan L Y, Wang J Y 2021 J. Infrared Millim. Waves 40 847Google Scholar

    [16]

    马宁, 刘莎, 李江勇 2017 激光与红外 47 717Google Scholar

    Ma N, Liu S, Li J Y Laser 2017 Infrared 47 717Google Scholar

    [17]

    Li J, Kirkwood R A, Baker L J, Bosworth D, Erotokritou K, Banerjee A, Heath R M, Natarajan C M, Barber Z H, Sorel M, Hadfield R H 2016 Opt. Express 24 13931Google Scholar

    [18]

    Allmaras J P, Wollman E E, Beyer A D, Briggs R M, Korzh B A, Bumble B, Shaw M D 2020 Nano Lett. 20 2163Google Scholar

    [19]

    Fardoost A, Wen H, Liu H, Vanani F G, Li G 2019 Appl. Opt. 58 D34Google Scholar

    [20]

    张秀兰, 刘恒, 余海军, 张文海 2011 物理学报 60 040303Google Scholar

    Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys. Sin. 60 040303Google Scholar

    [21]

    Wang X Z, Yin J F, Zhang K, Yan J 2019 Optik 185 405Google Scholar

    [22]

    Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法. 物理学报, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度. 物理学报, 2021, 70(23): 230702. doi: 10.7498/aps.70.20210920
    [3] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [4] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [5] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [6] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [7] 景敏, 华灯鑫, 乐静. 荧光激光雷达技术探测水面油污染系统仿真研究. 物理学报, 2016, 65(7): 070704. doi: 10.7498/aps.65.070704
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [10] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [11] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [12] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [13] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器. 物理学报, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [14] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [15] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器. 物理学报, 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  2017
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2023-11-16
  • 上网日期:  2023-12-22
  • 刊出日期:  2024-03-20

/

返回文章
返回