搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双级PIN限幅器的微波脉冲响应机理及规律

高铭萱 张洋 张军

引用本文:
Citation:

双级PIN限幅器的微波脉冲响应机理及规律

高铭萱, 张洋, 张军

Mechanism and rule of microwave pulse response of two-stage PIN limiter

Gao Ming-Xuan, Zhang Yang, Zhang Jun
PDF
HTML
导出引用
  • 基于双级限幅器中两个PIN二极管的多物理场仿真模型与限幅器中其他电路元器件的SPICE模型, 搭建了Si基双级PIN限幅器的场路协同仿真模型, 利用这一模型对微波脉冲作用下限幅器中两级PIN二极管的温度响应特性进行了仿真. 在此基础上对限幅器在不同频率、幅值微波脉冲信号作用下内部发生熔化现象所需的时间与能量进行了仿真, 并对这一过程进行了机理分析与响应特性规律总结. 仿真结果表明, 当限幅器中第一级PIN二极管内部最高温度已达到材料熔点时, 第二级PIN二极管的温度变化幅度较小. 限幅器内部发生熔化现象所消耗的时间与能量随信号幅值、频率的变化呈现出规律性关系, 发生熔化现象所需的时间随信号幅值或频率的提升而减小; 发生熔化现象所需的能量随频率的提升而降低, 随幅值的变化存在极大值点; 限幅器的响应特性对信号参数表现出了不同的敏感性.
    This paper aims to analyze the failure mechanism of the two-stage PIN limiter after having been injected by a microwave pulse. A two-stage PIN limiter model with high computational efficiency and accuracy is built by using the method of field-circuit collaborative simulation. Using this model, the temperature change of the PIN diodes during the injection of microwave pulse is simulated. The melting temperature of the PIN diode is selected as the failure criterion of the PIN limiter. The time and energy required for the failure of the PIN limiter under injection of microwave pulses with different frequencies and amplitudes are simulated. Furthermore, the mechanisms that trigger off these effects are analyzed. The relationship between the microwave pulse parameters and the PIN limiter failure time is summarized by using an empirical formula.According to the simulation results, the temperature change of the second-stage PIN diode is relatively small compared with that of the first-stage. During the injection of the microwave pulse, the failure time and energy consumption of limiter show a certain regularity with the variation of microwave pulse amplitude and frequency, and this work discusses this regularity from the following three aspects. Firstly, the failure time and energy consumption decrease in a similar trend with frequency increasing. And with the increase in signal amplitude, the failure time and energy consumption tend to stabilize. Secondly, the increase in the signal amplitude leads failure time to decrease, which is similar to the relationship between failure time and the signal frequency mentioned before. But as the signal’s amplitude increases, the energy consumption first increases and then decreases slightly when the amplitude reaches about 900 V. Based on the theoretical analysis and the physical image of the two-stage PIN limiter, the reasons for these effects can be explained as the changes in the I-region's impedance and heat distribution change caused by electric field changes. Thirdly, the failure time and energy consumption show different sensitivities to different parameters of the microwave pulse. The signal frequency change has greater influence on the energy consumption than the signal amplitude change, while the amplitude change can exert a greater influence on the failure time than the frequency change.
      通信作者: 张洋, 16103271g@connect.polyu.hk
    • 基金项目: 湖南省自然科学基金(批准号: 2023JJ40675)、湖南省科技创新计划(批准号: 2021RC2065)和国防科技大学学校科研计划(批准号: ZK22-42)资助的课题.
      Corresponding author: Zhang Yang, 16103271g@connect.polyu.hk
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40675), the Science and Technology Innovation Plan of Hunan Province, China (Grant No. 2021RC2065), and the Scientific Research Plan of National University of Defense Technology, China (Grant No. ZK22-42).
    [1]

    Yu X H, Chai C C, Liu Y, Yang Y T, Fan Q Y 2015 Microelectron. Reliab. 55 1174Google Scholar

    [2]

    Zhang C B, Zhang J D, Wang H G, Du G X 2015 Microelectron. Reliab. 55 508Google Scholar

    [3]

    Li H, Chai C C, Liu Y Q, Wu H, Yang Y T 2018 Chin. Phys. B 27 088502Google Scholar

    [4]

    Zhang C B, Zhang J D, Wang H G, Du G X 2016 Microelectron. Reliab. 60 41Google Scholar

    [5]

    Zhou L, Chen X, Peng H L, Yin W Y, Mao J F 2018 IEEE Trans. Electromagn. Cmpat. 60 1427Google Scholar

    [6]

    Zhou L, Zhang S, Yin W Y, Mao J F 2016 IEEE Trans. Electromagn. Compat. 58 487Google Scholar

    [7]

    赵振国, 马弘舸, 王艳 2012 微波学报 28 297Google Scholar

    Zhao Z G, Ma H G, Wang Y 2012 J. Microwaves 28 297Google Scholar

    [8]

    Zhang C B, Wang H G, Zhang J D, Du G X, Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545Google Scholar

    [9]

    Hampel G, Kolodner P, Gammel P L, Polakos P A, Obaldia E D, Mankiewich P M, Anderson A, Slattery R, Zhang D, Liang G C, Shih C F 1996 Appl. Phys. Lett. 69 571Google Scholar

    [10]

    Liu Y, Chai C C, Fan Q Y, Shi C L, Xi X W, Yu X H, Yang Y T 2016 Microelectron. Reliab. 66 32Google Scholar

    [11]

    马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌 2012 物理学报 61 078501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501Google Scholar

    [12]

    马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾 2013 物理学报 62 128501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Qiao L P, Shi C L 2013 Acta Phys. Sin. 62 128501Google Scholar

    [13]

    任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍 2013 物理学报 62 068501Google Scholar

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P 2013 Acta Phys. Sin. 62 068501Google Scholar

    [14]

    刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北 2016 物理学报 65 038402Google Scholar

    Liu Y, Chai C C, Yu X H, Fan Q Y, Yang Y T, Xi X W, Liu S B 2016 Acta Phys. Sin. 65 038402Google Scholar

    [15]

    张永战, 孟凡宝, 赵刚 2017 强激光与粒子束 29 093002Google Scholar

    Zhang Y Z, Meng F B, Zhao G 2017 High Power Laser Part. Beams 29 093002Google Scholar

    [16]

    周怀安, 杜正伟, 龚克 2005 强激光与粒子束 17 783

    Zhou H A, Du Z W, Gong K 2005 High Power Laser Part. Beams 17 783

    [17]

    戚玉佳, 李永东, 郝勇, 王洪广, 李平, 刘纯亮 2014 微波学报 30 220Google Scholar

    Qi Y J, Li Y D, Hao Y, Wang H G, Li P, Liu C L 2014 J. Microwaves 30 220Google Scholar

    [18]

    李勇, 宣春, 谢海燕, 夏洪富, 王建国 2013 强激光与粒子束 25 2061Google Scholar

    Li Y, Yi C, Xie H Y, Xia H F, Wang J G 2013 High Power Laser Part. Beams 25 2061Google Scholar

    [19]

    胡凯, 李天明, 汪海洋, 周翼鸿 2014 强激光与粒子束 26 063015Google Scholar

    Hu K, Li T M, Wang H Y, Zhou Y H 2014 High Power Laser Part. Beams 26 063015Google Scholar

    [20]

    易世鹏, 杜正伟, 赵景涛, 赵刚 2019 电波科学学报 34 479Google Scholar

    Yi S P, Du Z W, Zhao J T, Zhao G 2019 Chin. J. Radio Sci. 34 479Google Scholar

    [21]

    王明, 马弘舸 2018 强激光与粒子束 30 063002Google Scholar

    Wang M, Ma H G 2018 High Power Laser Part. Beams 30 063002Google Scholar

    [22]

    赵振国, 马弘舸, 赵刚, 王艳, 钟龙权 2013 强激光与粒子束 25 1741Google Scholar

    Zhao Z G, Ma H G, Zhao G, Wang Y, Zhong L Q 2013 High Power Laser Part. Beams 25 1741Google Scholar

    [23]

    Susanna R, Marina V, Luigi C, Massimo R, Giorgio B, Andreas D S, Fridolin I, Norbert F, Wolfgang F, Lucia Z 2002 IEEE. Trans. Electron. Devices 49 490Google Scholar

    [24]

    Canali C, Majni G, Minder R, Ottaviani G 1975 IEEE. Trans. Electron. Devices 22 1045Google Scholar

    [25]

    Leenov D 1964 IEEE. Trans. Electron. Devices 11 53Google Scholar

  • 图 1  双级PIN限幅器场路协同仿真模型的整体结构及求解过程示意图

    Fig. 1.  Frame of the field-circuit collaborative simulation model and the sketch map of its solution procedure.

    图 2  PIN二极管的结构模型及掺杂浓度分布 (a) D1结构模型; (b) D1 掺杂浓度分布; (c) D2结构模型; (d) D2 掺杂浓度分布

    Fig. 2.  Structure model and doping concentration of each PIN diodes: (a) Structure model of D1; (b) doping concentration distribution of D1; (c) structure model of D2; (d) doping concentration distribution of D2.

    图 3  限幅器输入-输出特性

    Fig. 3.  I-O characteristic of the limiter.

    图 4  (a) D1与(b) D2内部最高温度变化情况

    Fig. 4.  Change of the maximum temperature inside D1 (a) and D2 (b).

    图 5  限幅器在不同幅值信号作用下发生熔化现象时所消耗的时间与能量

    Fig. 5.  Time and energy consumption of the limiter when melting occurs under different amplitude signals.

    图 6  不同幅值信号作用下D1在发生熔化现象时的温度分布情况

    Fig. 6.  Temperature distribution of D1 under signals with different amplitude at the moment of melting occurs

    图 7  不同幅值信号作用下D1在发生熔化现象时的电场强度分布情况

    Fig. 7.  Electric field distribution of D1 under signals with different amplitude at the moment of melting occurs.

    图 8  限幅器在不同频率信号作用下发生熔化现象时所消耗的时间与能量

    Fig. 8.  Time and energy consumption of the limiter when melting occurs under different frequency signals.

    图 9  限幅器内部发生熔化现象所需时间、能量与信号频率及幅值的关系 (a) 时间消耗; (b) 能量消耗

    Fig. 9.  Relationship of time and energy consumption to the signal’s frequency and amplitude when melting occurs: (a) Time consumption; (b) energy consumption.

    图 10  经验方程计算结果与实际仿真结果对比图

    Fig. 10.  Comparison between empirical equation calculation results and actual simulation results

    表 A1  UniBo模型相关参数

    Table A1.  Parameters related to UniBo model

    参数 电子(P) 空穴(B)
    ${\mu _{\max }}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 1441 470.5
    $c$ –0.11 0
    $\gamma $ 2.45 2.16
    ${\mu _{0 d}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 62.2${T_n}^{{{ - }}{\gamma _{{0}d}}}$ 90.0$ {T_n}^{{{ - }}{\gamma _{{0}d}}} $
    ${\gamma _{0 d}}$ 0.7 1.3
    ${\mu _{1 d}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 48.6${T_n}^{{{ - }}{\gamma _{{1}d}}}$ 28.2${T_n}^{{{ - }}{\gamma _{{1}d}}}$
    ${\gamma _{1 d}}$ 0.7 2.0
    ${\mu _{1 a}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 73.5${T_n}^{{{ - }}{\gamma _{{1}a}}}$ 28.2${T_n}^{{{ - }}{\gamma _{{1}a}}}$
    ${\gamma _{1 a}}$ 1.25 0.8
    ${C_{r1}}$/cm–3 $8.5 \times {10^{16}} {T_n}^{{\gamma _{r1}}}$ $1.3 \times {10^{18}} {T_n}^{{\gamma _{r{1}}}}$
    ${\gamma _{r1}}$ 3.65 2.2
    ${C_{r2}}$/cm–3 $1.22 \times {10^{17}} {T_n}^{{\gamma _{r2}}}$ $2.45 \times {10^{17}} {T_n}^{{\gamma _{r{2}}}}$
    ${\gamma _{r2}}$ 2.65 3.1
    ${C_{s1}}$/cm–3 $4.0 \times {10^{20}} {T_n}^{{\gamma _{s{1}}}}$ $1.1 \times {10^{18}} {T_n}^{{\gamma _{s{1}}}}$
    ${\gamma _{s1}}$ 0 6.2
    ${C_{s2}}$/(1020 cm–3) $7.0$ $6.1$
    $\alpha $ 0.68 0.77
    $\beta $ 0.72 0.719
    ${\mu _{0 a}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 132.0${T_n}^{{{ - }}{\gamma _{{0}a}}}$ 44.0${T_n}^{{{ - }}{\gamma _{{0}a}}}$
    ${\gamma _{0 a}}$ 1.3 0.7
    下载: 导出CSV

    表 A2  Conwell-Weisskopf模型相关参数

    Table A2.  Parameters related to Conwell-Weisskopf model

    参数
    $D$/(cm–1·V–1·s–1)$1.04 \times {10^{21}}$
    $F$/cm–2$7.452 \times {10^{13}}$
    下载: 导出CSV

    表 A3  ${v_{{\text{sat}}}}$相关计算参数

    Table A3.  Parameters related to the calculation of ${v_{{\text{sat}}}}$

    参数电子空穴
    ${v_{{\text{sat, 0}}}}$/(107 cm·s–1)$1.07$$0.837$
    $ {v_{{\text{sat}}, \exp }} $0.870.52
    下载: 导出CSV

    表 A4  Canali模型相关参数

    Table A4.  Parameters related to Canali model

    参数电子空穴
    ${\beta _0}$1.1091.213
    ${\beta _{\exp }}$0.660.17
    下载: 导出CSV

    表 A5  SRH复合模型相关参数

    Table A5.  Parameters related to SRH Recombination model

    参数 电子 空穴
    ${\tau _{\min }}$/s 0 0
    ${\tau _{\max }}$/μs $10$ $3$
    ${\tau _0}$/μs $10$ $3$
    ${N_{{\text{ref}}}}$/(1016 cm–3) $1$ $1$
    $\gamma $ 1 1
    ${T_{\text{α }}}$ –1.5 –1.5
    ${E_{{\text{trap}}}}$/eV 0 0
    下载: 导出CSV

    表 A6  俄歇复合模型相关参数

    Table A6.  Parameters related to Auger recombination model

    参数电子空穴
    ${A_{\text{A}}}$/(10–32 cm6·s–1)$6.7$$7.2$
    ${B_{\text{A}}}$/(10–33 cm6·s–1)$245$$4.5$
    ${C_{\text{A}}}$/(10–33 cm6·s–1)$ - 2.2$$2.63$
    $H$3.466678.25688
    ${N_0}$/(1018 cm–3)$1$$1$
    下载: 导出CSV

    表 A7  雪崩模型相关参数

    Table A7.  Parameters related to avalanche model

    参数 电子 空穴
    ${a_0}$/V 4.65403 2.26018
    ${a_1}$/mV $ - 8.76031$ 13.4001
    ${a_2}$/μV $13.4037$ $ - 5.87724$
    ${a_3}$/nV $ - 2.75108$ $ - 1.14021$
    ${b_0}$/V –0.128302 0.058547
    ${b_1}$/(10–4 V) $44.5552$ $ - 1.95755$
    ${b_2}$/(10–7 V) $ - 108.66$ $2.44357$
    ${b_3}$/(10–10 V) $92.3119$ $ - 1.33202$
    ${b_4}$/(10–14 V) $ - 182.482$ $2.68082$
    ${b_5}$/V $ - 4.82689 \times {10^{ - 15}}$ 0
    ${b_6}$/V $1.09402 \times {10^{ - 17}}$ 0
    ${b_7}$/V $ - 1.24961 \times {10^{ - 20}}$ 0
    ${b_8}$/V $7.55584 \times {10^{ - 24}}$ 0
    ${b_9}$/V $ - 2.28615 \times {10^{ - 27}}$ 0
    ${b_{10}}$/V $2.73344 \times {10^{ - 31}}$ 0
    ${c_0}$/(103 V·cm–1) $7.76221$ $19.5399$
    ${c_1}$/(V·cm–1) 25.18888 –104.441
    ${c_2}$/(V·cm–1) $ - 1.37417 \times {10^{ - 3}}$ 0.498768
    ${c_3}$/(V·cm–1) $1.59525 \times {10^{ - 4}}$ 0
    ${d_0}$/(105 V·cm–1) $7.10481$ $20.7712$
    ${d_1}$/(103 V·cm–1) $3.98594$ 0.993153
    ${d_2}$/(V·cm–1) –7.19956 7.77769
    ${d_3}$/(V·cm–1) $6.96431 \times {10^{ - 3}}$ 0
    下载: 导出CSV
  • [1]

    Yu X H, Chai C C, Liu Y, Yang Y T, Fan Q Y 2015 Microelectron. Reliab. 55 1174Google Scholar

    [2]

    Zhang C B, Zhang J D, Wang H G, Du G X 2015 Microelectron. Reliab. 55 508Google Scholar

    [3]

    Li H, Chai C C, Liu Y Q, Wu H, Yang Y T 2018 Chin. Phys. B 27 088502Google Scholar

    [4]

    Zhang C B, Zhang J D, Wang H G, Du G X 2016 Microelectron. Reliab. 60 41Google Scholar

    [5]

    Zhou L, Chen X, Peng H L, Yin W Y, Mao J F 2018 IEEE Trans. Electromagn. Cmpat. 60 1427Google Scholar

    [6]

    Zhou L, Zhang S, Yin W Y, Mao J F 2016 IEEE Trans. Electromagn. Compat. 58 487Google Scholar

    [7]

    赵振国, 马弘舸, 王艳 2012 微波学报 28 297Google Scholar

    Zhao Z G, Ma H G, Wang Y 2012 J. Microwaves 28 297Google Scholar

    [8]

    Zhang C B, Wang H G, Zhang J D, Du G X, Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545Google Scholar

    [9]

    Hampel G, Kolodner P, Gammel P L, Polakos P A, Obaldia E D, Mankiewich P M, Anderson A, Slattery R, Zhang D, Liang G C, Shih C F 1996 Appl. Phys. Lett. 69 571Google Scholar

    [10]

    Liu Y, Chai C C, Fan Q Y, Shi C L, Xi X W, Yu X H, Yang Y T 2016 Microelectron. Reliab. 66 32Google Scholar

    [11]

    马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌 2012 物理学报 61 078501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501Google Scholar

    [12]

    马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾 2013 物理学报 62 128501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Qiao L P, Shi C L 2013 Acta Phys. Sin. 62 128501Google Scholar

    [13]

    任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍 2013 物理学报 62 068501Google Scholar

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P 2013 Acta Phys. Sin. 62 068501Google Scholar

    [14]

    刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北 2016 物理学报 65 038402Google Scholar

    Liu Y, Chai C C, Yu X H, Fan Q Y, Yang Y T, Xi X W, Liu S B 2016 Acta Phys. Sin. 65 038402Google Scholar

    [15]

    张永战, 孟凡宝, 赵刚 2017 强激光与粒子束 29 093002Google Scholar

    Zhang Y Z, Meng F B, Zhao G 2017 High Power Laser Part. Beams 29 093002Google Scholar

    [16]

    周怀安, 杜正伟, 龚克 2005 强激光与粒子束 17 783

    Zhou H A, Du Z W, Gong K 2005 High Power Laser Part. Beams 17 783

    [17]

    戚玉佳, 李永东, 郝勇, 王洪广, 李平, 刘纯亮 2014 微波学报 30 220Google Scholar

    Qi Y J, Li Y D, Hao Y, Wang H G, Li P, Liu C L 2014 J. Microwaves 30 220Google Scholar

    [18]

    李勇, 宣春, 谢海燕, 夏洪富, 王建国 2013 强激光与粒子束 25 2061Google Scholar

    Li Y, Yi C, Xie H Y, Xia H F, Wang J G 2013 High Power Laser Part. Beams 25 2061Google Scholar

    [19]

    胡凯, 李天明, 汪海洋, 周翼鸿 2014 强激光与粒子束 26 063015Google Scholar

    Hu K, Li T M, Wang H Y, Zhou Y H 2014 High Power Laser Part. Beams 26 063015Google Scholar

    [20]

    易世鹏, 杜正伟, 赵景涛, 赵刚 2019 电波科学学报 34 479Google Scholar

    Yi S P, Du Z W, Zhao J T, Zhao G 2019 Chin. J. Radio Sci. 34 479Google Scholar

    [21]

    王明, 马弘舸 2018 强激光与粒子束 30 063002Google Scholar

    Wang M, Ma H G 2018 High Power Laser Part. Beams 30 063002Google Scholar

    [22]

    赵振国, 马弘舸, 赵刚, 王艳, 钟龙权 2013 强激光与粒子束 25 1741Google Scholar

    Zhao Z G, Ma H G, Zhao G, Wang Y, Zhong L Q 2013 High Power Laser Part. Beams 25 1741Google Scholar

    [23]

    Susanna R, Marina V, Luigi C, Massimo R, Giorgio B, Andreas D S, Fridolin I, Norbert F, Wolfgang F, Lucia Z 2002 IEEE. Trans. Electron. Devices 49 490Google Scholar

    [24]

    Canali C, Majni G, Minder R, Ottaviani G 1975 IEEE. Trans. Electron. Devices 22 1045Google Scholar

    [25]

    Leenov D 1964 IEEE. Trans. Electron. Devices 11 53Google Scholar

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] 张玫玫, 吴意赟, 于洁, 屠娟, 章东. 脉冲占空比对磁性微泡介导的聚焦超声温升效应的影响. 物理学报, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [4] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [7] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [8] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法. 物理学报, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [9] 黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪. 激光二极管抽运氦气冷却钕玻璃叠片激光放大器热致波前畸变和应力双折射的数值模拟和实验研究. 物理学报, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [10] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [11] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [12] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究. 物理学报, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [13] 刘海强, 过振, 王石语, 林林, 郭龙成, 李兵斌, 蔡德芳. 二极管端面抽运固体激光器晶体棒与热沉接触热导研究. 物理学报, 2011, 60(1): 014212. doi: 10.7498/aps.60.014212
    [14] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究. 物理学报, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [16] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [17] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [18] 王立世, 潘春旭, 蔡启舟, 魏伯康. 等离子体电解氧化过程中单个稳态微放电的热效应研究. 物理学报, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [19] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [20] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
计量
  • 文章访问数:  1805
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-11-25
  • 上网日期:  2024-01-04
  • 刊出日期:  2024-03-20

/

返回文章
返回