-
激光回馈(或激光自混合干涉)技术在位移、距离、速度、振动等传统物理量测量领域具有广泛的研究和应用. 近20年来, 这项技术在纳米粒度检测中也展示出了巨大的前景, 其测量原理是: 基于激光束与照射区域每个粒子相互作用的非相干叠加, 粒子直径可以通过激光回馈信号功率谱的洛伦兹拟合而求出. 激光回馈粒度检测一般使用恒流驱动的半导体激光器, 其信号功率谱峰会位于零频附近, 只呈现出右侧部分, 有些使用固体激光器的粒度传感器通过一对声光调制器进行移频, 将功率谱峰搬离零频位置, 但是极大地增加了系统的复杂度和费用. 本文用线性调制电流驱动半导体激光器, 以产生近似线性调频, 从而方便地把功率谱峰搬移到任意期望的频谱位置上. 此外, 适当的光反馈强度下, 倾斜的回馈信号条纹会导致功率谱峰产生高次谐波, 这些谐波峰的频谱展宽较主峰更为明显, 可以有效提高纳米粒子检测的灵敏度. 本文所提出的新技术方案通过数值仿真和实验验证, 有望应用在低成本、结构紧凑、高灵敏度的激光回馈粒度传感器或相关仪器中.Laser self-mixing interferometry (SMI) has been widely researched and applied to the field of traditional physical quantities (such as displacement, distance, velocity and vibration) detection due to the well-known merits of compact structure, low-cost and high sensitivity, additionally, it has also shown great potential in nano-particle sizing during the last two decades, primarily depending on the incoherent stochastic superposition of laser beam’s interaction with each particle in the illuminating volume, and the particle diameter can be determined from the power spectra of self-mixed signals through Lorentz fitting. SMI particle sensing generally uses constant current driving laser diodes (LD), so the power spectrum peak occurs around zero-frequency and merely exhibits the right-hand half. Some other particle sensors using solid-state lasers (SSL), however, prefer to employ a pair of acousto-optic modulators (AOM) as frequency shifters, which pronouncedly increases the complexity and the cost of the whole system. In this paper, linear modulation current is applied to a LD to achieve laser frequency tuning and conveniently shift the concerned Lorentz peak to any desired spectrum position. Moreover, higher-order harmonics of the shifted Lorentz peak, arising from intrinsically tilted SMI fringes, exhibit wider spectrum broadening than the main peak and can be employed to improve the sensitivity in nano-particle recognition. The technique proposed has been validated by simulation and experimental results, and it is beneficial to developing low-cost, compact and highly sensitive SMI particle sensors or instruments.
-
Keywords:
- laser feedback /
- linear frequency tuning /
- particle sizing /
- higher-order harmonics /
- sensitivity
[1] 毛威, 张书练, 张连清, 朱钧, 李岩, 2006 物理学报 55 4704Google Scholar
Mao W, Zhang S L, Zhang L Q, Zhu J, Li Y 2006 Acta Phys. Sin. 55 4704Google Scholar
[2] 谈宜东, 张书练 2007 物理学报 56 6408Google Scholar
Tan Y D, Zhang S L 2007 Acta Phys. Sin. 56 6408Google Scholar
[3] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦 2014 物理学报 63 234202Google Scholar
Hao H, Xia W, Wang M, Guo D M, Ni X Q 2014 Acta Phys. Sin. 63 234202Google Scholar
[4] 张玉燕, 周航, 闫美素 2015 物理学报 64 054203Google Scholar
Zhang Y Y, Zhou H, Yan M S 2015 Acta Phys. Sin. 64 054203Google Scholar
[5] Sadiq Orakzai M, Amin S, Ahmad Khan Z, Akram F 2022 Opt. Mater. 129 112553Google Scholar
[6] Cavedo F, Esmaili P, Norgia M 2022 Sensors 22 8456Google Scholar
[7] Xiang R, Wang C, Lu L 2019 J. Opt. 48 384Google Scholar
[8] Zhang Z, Wang F, Yuan T, Li C 2020 Opt. Rev. 27 313Google Scholar
[9] Zhao Y, Xiang R, Chen J, Huang Z, Wang X, Ma Y, Yu B, Lu L 2021 Precis. Eng. 68 256Google Scholar
[10] Zakian C, Dickinson M, King T 2005 J. Opt. A: Pure Appl. Opt. 7 S445Google Scholar
[11] Otsuka K, Abe K, Sano N, Sudo S, Ko J Y 2005 Appl. Opt. 44 1709Google Scholar
[12] Sudo S, Miyasaka Y, Kamikariya K, Nemoto K, Otsuka K 2006 Jpn. J. Appl. Phys. 45 L926Google Scholar
[13] Sudo S, Miyasaka Y, Otsuka K, Takahashi Y, Oishi T, Ko J Y 2006 Opt. Express 14 1044Google Scholar
[14] Sudo S, Miyasaka Y, Nemoto K, Kamikariya K, Otsuka K 2007 Opt. Express 15 8135Google Scholar
[15] Wang H R, Shen J Q 2008 Chin. Opt. Lett. 6 871Google Scholar
[16] Wang H R, Shen J Q, Wang B, Yu B, Xu Y 2010 Appl. Phys. B 101 173Google Scholar
[17] Wang H R, Shen J Q 2012 Appl. Phys. B 106 127Google Scholar
[18] Wang H R, Shen J Q 2014 Appl. Phys. B 115 285Google Scholar
[19] Contreras V, Lönnqvist J, Toivonen J 2016 Opt. Express 24 260908Google Scholar
[20] Ramírez-Miquet E E, Perchoux J, da Costa Moreira R, Zhao Y, Luna-Arriaga A, Tronche C, Sotolongo-Costa O 2017 Revista Cubana de Fisica 34 48
[21] da Costa Moreira R, Perchoux J, Zhao Y, Tronche C, Jayat F, Bosch T 2017 2017 IEEE Sensors (Glasgow: IEEE) pp1–3
[22] Herbert J, Bertling K, Taimre T, Rakić A D, Wilson S 2018 Opt. Express 26 25778Google Scholar
[23] Zhao Y, Zhang M, Zhang C, Yang W, Chen T, Perchoux J, Ramírez-Miquet E E, da Costa Moreira R 2019 Appl. Sci. 9 5563Google Scholar
[24] Zhao Y, Camps T, Bardinal V, Perchoux J 2019 Appl. Sci. 9 3903Google Scholar
[25] Plantier G, Bes C, Bosch T 2005 IEEE J. Quantum Electron. 41 1157Google Scholar
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 参数 数值 反馈强度 C $ C< 1 $ 粒子数目 $ \left\langle N\right\rangle $ 100 线宽展宽因子 α 5 环境温度 T 298 K 样品距离 $ L_0 $ 8 cm 溶剂黏度 η $ 8.935\times 10^{-4} $ Pa·s 激光波长 λ 850 nm 粒子粒径 x 500 nm 溶剂折射率 n 1.33 电流调谐系数 γ $ 8\times 10^{9} $ Hz/mA 波尔兹曼常数 $k_{\rm{B} }$ $ 1.3806488\times 10^{-23} $ 采样率 100 kHz 调制电流峰峰值 5 mA 调制电流频率 100 Hz 表 2 不同谐波阶次下洛伦兹峰的宽度
Table 2. Width of Lorentz peak under different harmonic orders
谐波阶次 1 2 3 4 5 6 $ Dq^2 $ 250.74 553.48 735.08 1028.34 1225.51 1464.29 表 3 本方案与其他两种方案的定性比较
Table 3. Comparison between this scheme and other two typical methods
方案 结构 成本 灵敏度提升 本方案 简单 较低 有 方案一 简单 最低 无 方案二 较复杂 很高 无 -
[1] 毛威, 张书练, 张连清, 朱钧, 李岩, 2006 物理学报 55 4704Google Scholar
Mao W, Zhang S L, Zhang L Q, Zhu J, Li Y 2006 Acta Phys. Sin. 55 4704Google Scholar
[2] 谈宜东, 张书练 2007 物理学报 56 6408Google Scholar
Tan Y D, Zhang S L 2007 Acta Phys. Sin. 56 6408Google Scholar
[3] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦 2014 物理学报 63 234202Google Scholar
Hao H, Xia W, Wang M, Guo D M, Ni X Q 2014 Acta Phys. Sin. 63 234202Google Scholar
[4] 张玉燕, 周航, 闫美素 2015 物理学报 64 054203Google Scholar
Zhang Y Y, Zhou H, Yan M S 2015 Acta Phys. Sin. 64 054203Google Scholar
[5] Sadiq Orakzai M, Amin S, Ahmad Khan Z, Akram F 2022 Opt. Mater. 129 112553Google Scholar
[6] Cavedo F, Esmaili P, Norgia M 2022 Sensors 22 8456Google Scholar
[7] Xiang R, Wang C, Lu L 2019 J. Opt. 48 384Google Scholar
[8] Zhang Z, Wang F, Yuan T, Li C 2020 Opt. Rev. 27 313Google Scholar
[9] Zhao Y, Xiang R, Chen J, Huang Z, Wang X, Ma Y, Yu B, Lu L 2021 Precis. Eng. 68 256Google Scholar
[10] Zakian C, Dickinson M, King T 2005 J. Opt. A: Pure Appl. Opt. 7 S445Google Scholar
[11] Otsuka K, Abe K, Sano N, Sudo S, Ko J Y 2005 Appl. Opt. 44 1709Google Scholar
[12] Sudo S, Miyasaka Y, Kamikariya K, Nemoto K, Otsuka K 2006 Jpn. J. Appl. Phys. 45 L926Google Scholar
[13] Sudo S, Miyasaka Y, Otsuka K, Takahashi Y, Oishi T, Ko J Y 2006 Opt. Express 14 1044Google Scholar
[14] Sudo S, Miyasaka Y, Nemoto K, Kamikariya K, Otsuka K 2007 Opt. Express 15 8135Google Scholar
[15] Wang H R, Shen J Q 2008 Chin. Opt. Lett. 6 871Google Scholar
[16] Wang H R, Shen J Q, Wang B, Yu B, Xu Y 2010 Appl. Phys. B 101 173Google Scholar
[17] Wang H R, Shen J Q 2012 Appl. Phys. B 106 127Google Scholar
[18] Wang H R, Shen J Q 2014 Appl. Phys. B 115 285Google Scholar
[19] Contreras V, Lönnqvist J, Toivonen J 2016 Opt. Express 24 260908Google Scholar
[20] Ramírez-Miquet E E, Perchoux J, da Costa Moreira R, Zhao Y, Luna-Arriaga A, Tronche C, Sotolongo-Costa O 2017 Revista Cubana de Fisica 34 48
[21] da Costa Moreira R, Perchoux J, Zhao Y, Tronche C, Jayat F, Bosch T 2017 2017 IEEE Sensors (Glasgow: IEEE) pp1–3
[22] Herbert J, Bertling K, Taimre T, Rakić A D, Wilson S 2018 Opt. Express 26 25778Google Scholar
[23] Zhao Y, Zhang M, Zhang C, Yang W, Chen T, Perchoux J, Ramírez-Miquet E E, da Costa Moreira R 2019 Appl. Sci. 9 5563Google Scholar
[24] Zhao Y, Camps T, Bardinal V, Perchoux J 2019 Appl. Sci. 9 3903Google Scholar
[25] Plantier G, Bes C, Bosch T 2005 IEEE J. Quantum Electron. 41 1157Google Scholar
计量
- 文章访问数: 2395
- PDF下载量: 49
- 被引次数: 0