搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究

张超 布龙祥 张智超 樊朝霞 凡凤仙

引用本文:
Citation:

丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究

张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙

Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets

Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian
PDF
HTML
导出引用
  • 表面张力在纳米气溶胶颗粒的吸湿生长研究中具有重要意义, 然而现有实验方法不能对其准确测量. 本文基于分子动力学方法模拟了丁二酸气溶胶颗粒吸湿生长形成稳定液滴的动力学过程, 在此基础上, 建立模型计算了液滴的表面张力, 进而探究了温度、粒径和丁二酸浓度对纳米液滴表面张力的影响机制. 结果表明, 随着温度从260 K升高到320 K, 液滴内分子间作用力的减弱导致了液滴表面张力的减小, 且表面张力的减小程度随丁二酸浓度的增大而增大, 究其主要原因在于液滴中丁二酸分子的径向分布随温度和丁二酸浓度变化的差异; 随着粒径的增大, 液滴表面张力先增大后趋于定值, 且粒径对表面张力的显著影响区间随着丁二酸浓度的增大而缩短; 研究还发现, 丁二酸分子的表面活性导致液滴表面张力随着丁二酸浓度的增大而减小, 且减小趋势符合对数函数形式, 尤其是在粒径小于6.12 nm时, 同时, 基于Szyszkowski公式对液滴的表面张力进行了拟合. 本文研究成果能为气溶胶颗粒的吸湿生长和相关动力学过程预测理论及模型的改进提供参数依据.
    The surface tension plays a significant role in the hygroscopicity of aerosol particles on a nanoscale. However, it cannot be obtained by using the existing measurement techniques. In this study, we simulate the hygroscopic growth of one single succinic acid (SA) particle by using the molecular dynamic (MD) method. Based on the MD simulation results, the surface tension of the stable SA-water droplet is calculated by using a numerical model. Furthermore, the influencing mechanisms of temperature, diameter and concentration of SA on the surface tension of the nanoscale droplet are investigated. The results show that with the temperature increasing from 260 K to 320 K, the surface tension of the droplet decreases, which is mainly caused by the weakening of the intermolecular forces inside the droplet. Besides, the sensitivity of the surface tension to the temperature increases with the increasing SA concentration, which can be explained by the effect of the temperature and the SA concentration on the radial distribution of SA molecules. With the increase of the particle diameter, the surface tension of droplet first increases and then tends to be constant. The normal components of the Irving-Kirkwood pressure tensors are calculated to explain the effect of diameter and SA on the surface tension. In addition, when the SA concentration is increased, the particle diameter range which has an obvious effect on the surface tension is reduced. Moreover, the surface tension of the nanodroplet is negatively correlated with the SA concentration, and the correlation fits into the logarithmic function form, especially for droplet with a diameter smaller than 6.12 nm. The Szyszkowski equation is employed to fit the relationship between SA concentration and the surface tension of droplet. These findings can provide parameter support for improving the theoretical model of particle hygroscopicity and related kinetic processes. This study emphasizes further research on the surface tension of nano-droplets with more complex components.
      通信作者: 张超, chaozhang@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52106207)资助的课题
      Corresponding author: Zhang Chao, chaozhang@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52106207)
    [1]

    Mahowald N 2011 Science 334 794Google Scholar

    [2]

    Scott C E, Arnold S R, Monks S A, Asmi A, Paasonen P, Spracklen D V 2018 Nat. Geosci. 11 44Google Scholar

    [3]

    Fan F X, Zhang S H, Wang W Y, Yan J P, Su M X 2019 Process Saf. Environ. Prot. 125 197Google Scholar

    [4]

    Fan F X, Zhang S H, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2019 Can. J. Chem. Eng. 97 930Google Scholar

    [5]

    Cheng Y, Su H, Koop T, Mikhailov E, Poschl U 2015 Nat. Commun. 6 5923Google Scholar

    [6]

    Yamada T, Sakai K 2012 Phys. Fluids 24 022103Google Scholar

    [7]

    Morris H S, Grassian V H, Tivanski A V 2015 Chem. Sci. 6 3242Google Scholar

    [8]

    Dutcher C S, Wexler A S, Clegg S L 2010 J. Phys. Chem. A 114 12216Google Scholar

    [9]

    Wexler A S, Clegg S L 2002 J. Geophys. Res. Atmos. 107 ACH 14

    [10]

    Chapela G A, Saville G, Thompson S M, Rowlinson J S 1977 J. Chem. Soc. Faraday Trans. 2 73 1133Google Scholar

    [11]

    Blokhuis E M, Bedeaux D, Holcomb C D, Zollweg J A 1995 Mol. Phys. 85 665Google Scholar

    [12]

    Chen F, Smith P E 2007 J. Chem. Phys. 126 221101Google Scholar

    [13]

    Wang X X, Chen C C, Binder K, Kuhn U, Pöschl U, Su H, Cheng Y F 2018 Atmos. Chem. Phys. 18 17077Google Scholar

    [14]

    Sun L, Li X, Hede T, Tu Y Q, Leck C, Ågren H 2012 J. Phys. Chem. B 116 3198Google Scholar

    [15]

    Liu L, Guo S, Zhao Z, Li H 2022 J. Phys. Chem. A 126 2407Google Scholar

    [16]

    Petters S S, Petters M D 2016 J. Geophys. Res. Atmos. 121 1878Google Scholar

    [17]

    Zhang C, Zhang Z C, Bu L X, Yang Y, Xiong W, Wang Y S 2023 Particuology 77 128Google Scholar

    [18]

    Nosé S C 1984 Mol. Phys. 52 255Google Scholar

    [19]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [21]

    Jorgensen W L, Maxwell D S, Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225Google Scholar

    [22]

    Li X, Hede T, Tu Y, Leck C, Ågren H 2011 Atmos. Chem. Phys. 11 519Google Scholar

    [23]

    Wang B B, Wang X D, Duan Y Y, Chen M 2014 Int. J. Heat Mass Transfer 73 533Google Scholar

    [24]

    Eastwood J W, Hockney R W, Lawrence D N 1980 Comput. Phys. Commun. 19 215Google Scholar

    [25]

    Thompson S M, Gubbins K E, Walton J P R B, Chantry R A R, Rowlinson J S 1984 J. Chem. Phys. 81 530Google Scholar

    [26]

    Köhler H 1936 Trans. Faraday Soc. 32 1152Google Scholar

    [27]

    Vargaftik N B, Volkov B N, Voljak L D 1983 J. Phys. Chem. Ref. Data 12 817Google Scholar

    [28]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [29]

    Booth A M, Topping D O, McFiggans G, Percival C J 2009 Phys. Chem. Chem. Phys. 11 8021Google Scholar

    [30]

    Liu L Y, Li H 2023 Atmos. Environ. 294 119500Google Scholar

    [31]

    Szyszkowski B V 1908 Z. Phys. Chem. 64 385Google Scholar

  • 图 1  稳定液滴(1000 H2O + 60 SA)的形成过程, 图中绿色、红色、黄色和蓝色球分别代表丁二酸、氮气、氧气和水分子

    Fig. 1.  Process of the stable droplet formation. The green, red, yellow, and blue balls represent succinic acid, nitrogen, oxygen, and water molecules, respectively.

    图 2  温度对丁二酸(SA)液滴表面张力的影响

    Fig. 2.  Effect of temperature on the surface tension of the succinic acid (SA) droplet.

    图 3  液滴中所有分子组成的群体与其自身间相互作用势能E (a)纯水液滴(1000 H2O); (b)二元液滴(1000 H2O + 60 SA)

    Fig. 3.  The interaction energies between the group consisted of all molecules with itself: (a) Pure water droplet (1000 H2O); (b) binary droplet (1000 H2O + 60 SA).

    图 4  液滴表面区域中SA质量占总质量的比例, NSA为液滴中SA分子个数

    Fig. 4.  Percentage of SA mass in the surface region of droplets, and NSA represents the number of SA molecules in the droplet.

    图 5  不同温度条件下包含1000 水(H2O)和10, 30, 60或90个丁二酸(SA)分子液滴的等摩尔半径Re、密度 ρα(a)和形成功W(b)

    Fig. 5.  At different temperatures, radius for equimolar dividing surface Re, density ρα (a) and the work of formation W (b) for droplets containing 1000 H2O and 10, 30, 60 or 90 SA

    图 6  液滴粒径对表面张力的影响

    Fig. 6.  Effect of droplet size on the surface tension.

    图 7  不同粒径纯水液滴(a)和丁二酸-水液滴(b)的Irving-Kirkwood压力张量法向分量以及其差值(c)

    Fig. 7.  Normal component of the Irving-Kirkwood pressure tensor of pure water droplet (a) and SA droplet (b), and the differences are in (c).

    图 8  丁二酸浓度对液滴表面张力的影响

    Fig. 8.  Effect of succinic acid concentration on the surface tension of droplet.

    表 1  不同液滴中Szyszkowski公式中拟合参数Γmaxγ

    Table 1.  Fitted coefficients Γmax and γ in Szyszkowski equation for different droplets.

    Nw500750100020003000400050006000
    Re/nm1.5281.7511.9262.4272.7803.0613.2963.504
    σw/(mN·m–1)55.10058.09962.11267.76069.33469.33970.37170.688
    Γmax/(10–6 mol·m-2)0.7110.8722.5981.9103.7437.36810.96311.018
    γ/(mol·L-1)0.0740.1231.3631.2741.2974.3266.3666.755
    下载: 导出CSV
  • [1]

    Mahowald N 2011 Science 334 794Google Scholar

    [2]

    Scott C E, Arnold S R, Monks S A, Asmi A, Paasonen P, Spracklen D V 2018 Nat. Geosci. 11 44Google Scholar

    [3]

    Fan F X, Zhang S H, Wang W Y, Yan J P, Su M X 2019 Process Saf. Environ. Prot. 125 197Google Scholar

    [4]

    Fan F X, Zhang S H, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2019 Can. J. Chem. Eng. 97 930Google Scholar

    [5]

    Cheng Y, Su H, Koop T, Mikhailov E, Poschl U 2015 Nat. Commun. 6 5923Google Scholar

    [6]

    Yamada T, Sakai K 2012 Phys. Fluids 24 022103Google Scholar

    [7]

    Morris H S, Grassian V H, Tivanski A V 2015 Chem. Sci. 6 3242Google Scholar

    [8]

    Dutcher C S, Wexler A S, Clegg S L 2010 J. Phys. Chem. A 114 12216Google Scholar

    [9]

    Wexler A S, Clegg S L 2002 J. Geophys. Res. Atmos. 107 ACH 14

    [10]

    Chapela G A, Saville G, Thompson S M, Rowlinson J S 1977 J. Chem. Soc. Faraday Trans. 2 73 1133Google Scholar

    [11]

    Blokhuis E M, Bedeaux D, Holcomb C D, Zollweg J A 1995 Mol. Phys. 85 665Google Scholar

    [12]

    Chen F, Smith P E 2007 J. Chem. Phys. 126 221101Google Scholar

    [13]

    Wang X X, Chen C C, Binder K, Kuhn U, Pöschl U, Su H, Cheng Y F 2018 Atmos. Chem. Phys. 18 17077Google Scholar

    [14]

    Sun L, Li X, Hede T, Tu Y Q, Leck C, Ågren H 2012 J. Phys. Chem. B 116 3198Google Scholar

    [15]

    Liu L, Guo S, Zhao Z, Li H 2022 J. Phys. Chem. A 126 2407Google Scholar

    [16]

    Petters S S, Petters M D 2016 J. Geophys. Res. Atmos. 121 1878Google Scholar

    [17]

    Zhang C, Zhang Z C, Bu L X, Yang Y, Xiong W, Wang Y S 2023 Particuology 77 128Google Scholar

    [18]

    Nosé S C 1984 Mol. Phys. 52 255Google Scholar

    [19]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [21]

    Jorgensen W L, Maxwell D S, Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225Google Scholar

    [22]

    Li X, Hede T, Tu Y, Leck C, Ågren H 2011 Atmos. Chem. Phys. 11 519Google Scholar

    [23]

    Wang B B, Wang X D, Duan Y Y, Chen M 2014 Int. J. Heat Mass Transfer 73 533Google Scholar

    [24]

    Eastwood J W, Hockney R W, Lawrence D N 1980 Comput. Phys. Commun. 19 215Google Scholar

    [25]

    Thompson S M, Gubbins K E, Walton J P R B, Chantry R A R, Rowlinson J S 1984 J. Chem. Phys. 81 530Google Scholar

    [26]

    Köhler H 1936 Trans. Faraday Soc. 32 1152Google Scholar

    [27]

    Vargaftik N B, Volkov B N, Voljak L D 1983 J. Phys. Chem. Ref. Data 12 817Google Scholar

    [28]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [29]

    Booth A M, Topping D O, McFiggans G, Percival C J 2009 Phys. Chem. Chem. Phys. 11 8021Google Scholar

    [30]

    Liu L Y, Li H 2023 Atmos. Environ. 294 119500Google Scholar

    [31]

    Szyszkowski B V 1908 Z. Phys. Chem. 64 385Google Scholar

  • [1] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [2] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [3] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [4] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [5] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [6] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [7] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [8] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [9] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [10] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [11] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [12] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [13] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [14] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [15] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟. 物理学报, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [16] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [17] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [18] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  4717
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-04-11
  • 上网日期:  2023-04-18
  • 刊出日期:  2023-06-05

/

返回文章
返回