-
水蒸气凝结是自然界中一种普遍存在的物理现象, 在各类工业生产过程中扮演着重要的角色. 因此, 针对水蒸气凝结过程的调控机制, 近年来受到学者们广泛关注. 本文采用分子动力学模拟方法以铜表面为研究对象, 构建二级微结构模型进行水蒸气凝结行为的研究, 讨论了不同几何特性对凝结过程的影响. 发现随着柱宽度或柱高比的增大, 凝结量先增大后减小; 随着柱间距的增大凝结量随之减小; 第2级微结构形状对凝结能力的提升由强至弱依次为圆柱、矩形、圆台, 第1级微结构形状对凝结能力的提升由强至弱依次为矩形、圆柱、圆台; 水蒸气凝结受第1和第2级微结构的共同影响.Steam condensation is a common physical phenomenon in nature and plays an important role in various industrial processes. Therefore, the regulation mechanism of steam condensation process has been widely concerned by scholars in recent years. In this paper, the molecular dynamics simulation method is used to study the vapor condensation behavior of copper surface by establishing a secondary microstructure model. The influences of different geometrical characteristics on the condensation process are discussed by analyzing the nucleation and merging time of droplets, the vapor condensation snapshot, the total number of condensed water molecules, and the total number of water molecules in the maximum condensed drop. With the increase of column width or column height ratio, the molecular weight of the total condensed water first increases and then decreases.
-
Keywords:
- molecular dynamics /
- vapor condensation /
- secondary microstructure /
- nanostructure
-
表 1 L-J势函数内各原子模拟参数
Table 1. Simulation parameters of each atom in L-J potential function.
ε/eV σ/Å 电荷/e H—H 0 0 0.5242 O—O 0.0070 3.1644 –1.0484 Cu-1—H 0 0 0 Cu-1—O 0.0216 2.2307 0 Cu-1—Cu-1 0.5203 2.2973 0 Cu-2—H 0 0 0 Cu-2—O 0.0144 2.2307 0 Cu-2—Cu-2 0.5203 2.2973 0 -
[1] Guelen S C 2013 J. Eng. Gas Turb. Power 135 12
[2] Dykas S, Majkut M, Smołka K, Strozik M 2018 Proc. Institut. Mech. Eng. A J. Pow. 232 501
Google Scholar
[3] 周大平 2023 辽宁化工 52 609
Google Scholar
Zhou D P 2023 Liaoning Chem. Ind. 52 609
Google Scholar
[4] 王玉东 2018 化工设计通讯 44 206
Google Scholar
Wang Y D 2018 Chem. Eng. Design Commun. 44 206
Google Scholar
[5] 蒋树杨 2019 化工与医药工程 40 24
Jiang S Y 2019 Chem. Pharmaceut. Eng. 40 24
[6] Esmaeeli A, Passandideh-Fard M 2020 IJST T. Mech. Eng. 45 535
[7] Gordon B E, Karabulin V A, Krasnokutski A S, Matyushenko V I, Khodos I I 2017 High Energy Chem. 51 245
Google Scholar
[8] 梅路遥2021硕士学位论文 (南昌: 南昌大学)
Mei L Y 2021 M. S. Thesis(Nanchang: Nanchang University
[9] 温荣福, 马学虎, 兰忠, 彭本利, 徐威 2015 科学通报 60 2784
Google Scholar
Wen R F, Ma X H, Lan Z, Peng B L, Xu W 2015 Chin. Sci. Bull. 60 2784
Google Scholar
[10] 兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 物理学报 61 150508
Google Scholar
Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508
Google Scholar
[11] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳 2019 物理学报 68 030501
Google Scholar
Hu M D, Zhang Q Y, Sun D K, Zhu M F 2019 Acta Phys. Sin. 68 030501
Google Scholar
[12] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰 2020 物理学报 69 186801
Google Scholar
Fan Z H, Rong W B, Liu Z X, Gao J, Tian Y B 2020 Acta Phys. Sin. 69 186801
Google Scholar
[13] 李春曦, 马成, 叶学民 2023 物理学报 72 024702
Google Scholar
Li C X, Ma C, Ye X M 2023 Acta Phys. Sin. 72 024702
Google Scholar
[14] Ouyang Y Y 2017 M. S. Thesis (Beijing: North China Electric Power University)](in Chinese)[欧阳袁渊2017硕士学位论文 (北京: 华北电力大学)]
[15] 费媛媛, 贾志海, 肖昌昊, 张涛, 陈梦谣 2019 工程热物理学报 40 926
Fei Y Y, Jia Z H, Xiao C H, Zhang T, Chen M Y 2019 J. Eng. Thermophys. 40 926
[16] Wang X, Xu B, Liu Q S, Yang Y, Chen Z Q 2021 Int. J. Heat Mass 177 121526
Google Scholar
[17] Aminian E, Kamali M, Vatanjoo E, Saffari H 2022 Heat Mass Trans. 58 1
Google Scholar
[18] Wang Y M, Liu Y L, Zhang L 2019 Acta Phys. Sin. 68 166402](in Chinese)[王亚明, 刘永利, 张林 2019物理学报68 166402]
[19] 徐珂, 许龙, 周光平 2021 物理学报 70 194301
Google Scholar
Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301
Google Scholar
[20] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏 2021 物理学报 70 126101
Google Scholar
Li W, Ma X J, Xu J L, Wang Y, Lei J P 2021 Acta Phys. Sin. 70 126101
Google Scholar
[21] 齐凯, 朱星光, 王军, 夏国栋 2024 物理学报 73 156801
Google Scholar
Qi K, Zhu X G, Wang J, Xia G D 2024 Acta Phys. Sin. 73 156801
Google Scholar
[22] Huang D B, Quan X J, Cheng P 2018 Int. Commun. Heat Mass 98 232
Google Scholar
[23] 王浩杰, 曹自洋, 张洋精, 朱译文 2022 苏州科技大学学报(工程技术版) 35 68
Wang H J, Cao Z Y, Zhang Y J, Zhu Y W 2022 J. Suzhou Univ. Sci. Techn. (Eng. Techn. Ed. ) 35 68
[24] Wang Z, Wang S, Wang D Q, Yang Y R, Wang X D, Lee D J 2023 Int. J. Heat Mass 12 29
[25] Shi Z Y, Zhong S H, Zhang B, Wen Z C, Chen L F 2024 Int. J. Heat Mass 228 11
[26] Nurrohman N, Almisbahi H, Tocci E, Abulkhair H, Albeirutty M, Othman R, Bamaga O 2024 Nanomaterials 14 1137
Google Scholar
[27] Wei L, Wang P, Chen X Y, Chen Z 2024 Surf. Interfaces 52 104981
Google Scholar
[28] Jones J E 1924 Proc. Roy. Soc. A 106 463
[29] 杨世铭, 陶文铨 2006 传热学(第4版)) (北京: 高等教育出版社) 第563页
Yang S M, Tao W Q 2006 Heat Transfer (4th Ed) (Beijing: Higher Education Press) p563
计量
- 文章访问数: 337
- PDF下载量: 8
- 被引次数: 0