搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预测HL-2A托卡马克台基结构的MHD稳定性数值研究

孙梓源 王元震 刘悦

引用本文:
Citation:

预测HL-2A托卡马克台基结构的MHD稳定性数值研究

孙梓源, 王元震, 刘悦

Numerical study on predicting MHD stability of HL-2A tokamak pedestal structure

Sun Zi-Yuan, Wang Yuan-Zhen, Liu Yue
PDF
HTML
导出引用
  • 基于HL-2A实验参数, 利用TOQ程序构建了具有不同台基结构的平衡, 在BOUT++三场模块下对台基磁流体力学(magnetohydrodynamics, MHD)稳定性进行数值模拟研究. 线性模拟表明, 减小台基高度、增大台基宽度、减小台基电流能够提高台基MHD稳定性, 利用色散关系理论, 对上述现象进行解释. 在MHD稳定性的前提下, 预测了不同台基宽度对应的最高台基高度, 对数据进行拟合, 得到可以预测临界台基高度的公式, 并在此基础上结合动理学气球模(kinetic ballooning mode, KBM)理论, 同时预测了台基高度和宽度. 本文也研究了台基结构对MHD不稳定模式的影响, 线性模拟表明, 台基高度能够微弱影响不稳定模式的径向模展宽; 非线性模拟表明, 不稳定模式的前期增长主要受单一主导模的影响, 模式增长到一定大小会发生台基坍塌, 爆发边缘局域模(edge localized mode, ELM), ELM尺寸的演化与主导模幅值的演化同步, 总体来说具有较大线性增长率的平衡在非线性模拟中具有更大的ELM尺寸和更广范围的台基坍塌.
    HL-2A tokamak achieved the first ELMy H-mode discharge operation in 2009 under divertor configuration, and many experimental and simulation researches have been carried out to investigate the pedestal magnetohydrodynamic (MHD) instability. However, there are still few studies on the effect of pedestal structure on MHD stability. Therefore, based on HL-2A experimental parameters, equilibria with different pedestal structures are generated by using TOQ code, and the MHD stability of the equilibria is simulated by using the BOUT++ three-field module. The linear simulations show that reducing the pedestal height, increasing the pedestal width, reducing the pedestal current density and reducing the ion density in the pedestal can improve the MHD stability of pedestal. Using the theory of dispersion relation, the simulation results are explained. Under the premise of MHD stability, the maximum pedestal heights corresponding to different pedestal widths are found, and the data are fitted to obtain an empirical formula that can predict pedestal height, and on this basis, considering the kinetic ballooning mode theory, pedestal height and width are predicted simultaneously. The effect of the pedestal structure on the MHD mode structure is investigated, it is found that the pedestal height can affect the radial width of the mode. Nonlinear simulations show that the pre-growth of instability is affected mainly by a single dominant mode, and the growth of the dominant mode to a certain size will cause the collapse of the pedestal and the eruption of the edge localized mode (ELM). The variation of ELM size after ELM eruption is synchronized with the evolution of the dominant mode. Generally, equilibria with larger linear growth rates have larger ELM sizes and a wider range of pedestal collapse in nonlinear simulations. In this work, the scanning of the pedestal data focuses mainly on the width and height of the pedestal, and other parameters such as small radius, toroidal magnetic field, plasma current, and the pedestal safety factor values will be changed in the future based on the work in this paper, with the aim of enriching the HL-2A pedestal database and predicting the pedestal structure more accurately. Finally these results will be integrated under the HL-2A integrated platform, which in turn will provide a reference for HL-2A tokamak H-mode experiments and integrated simulations.
      通信作者: 刘悦, liuyue@dlut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0303102)资助的课题.
      Corresponding author: Liu Yue, liuyue@dlut.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2018YFE0303102).
    [1]

    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175Google Scholar

    [2]

    Aymar R, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519Google Scholar

    [3]

    Neuhauser J, Alexander M, Becker G, et al. 1995 Plasma Phys. Control. Fusion 37 A37Google Scholar

    [4]

    Groebner R J, Osborne T H 1998 Phys. Plasmas 5 1800Google Scholar

    [5]

    Connor J W, Hastie R J, Wilson H R, Miller R L 1998 Phys. Plasmas 5 2687Google Scholar

    [6]

    Wu N, Chen S Y, Mou M L, Tang C J 2018 Phys. Plasmas 25 092305Google Scholar

    [7]

    Sun C K, Xu X Q, Ma C H, Li B 2018 Phys. Plasmas 25 082106Google Scholar

    [8]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [9]

    Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin A, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M 2003 J. Nucl. Mater. 313-316 11Google Scholar

    [10]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [11]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Mossessian D, Murakami M, Osborne T H, Turnbull A D, Xu X Q 2004 Nucl. Fusion 44 320Google Scholar

    [12]

    Wilson H R, Snyder P B, Huysmans G T A, Miller R L 2002 Phys. Plasmas 9 1277Google Scholar

    [13]

    Chance M S, Chu M S, Okabayashi M, Turnbull A D 2002 Nucl. Fusion 42 295Google Scholar

    [14]

    Huysmans G T A, Sharapov S E, Mikhailovskii A B, Kerner W 2001 Phys. Plasmas 8 4292Google Scholar

    [15]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [16]

    Snyder P B, Aiba N, Beurskens M, Groebner R J, Horton L D, Hubbard A E, Hughes J W, Huysmans G T A, Kamada Y, Kirk A, Konz C, Leonard A W, Lönnroth J, Maggi C F, Maingi R, Osborne T H, Oyama N, Pankin A, Saarelma S, Saibene G, Terry J L, Urano H, Wilson H R 2009 Nucl. Fusion 49 085035Google Scholar

    [17]

    Snyder P B, Groebner R J, Hughes J W, Osborne T H, Beurskens M, Leonard A W, Wilson H R, Xu X Q 2011 Nucl. Fusion 51 103016Google Scholar

    [18]

    Groebner R J, Chang C S, Hughes J W, et al. 2013 Nucl. Fusion 53 093024Google Scholar

    [19]

    李凯 2020 博士学位论文 (合肥: 中国科学技术大学)

    Li K 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [20]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [21]

    Xia T Y, Xu X Q, Dudson B D, Li J 2012 Contrib. Plasma Phys. 52 353Google Scholar

    [22]

    Xia T Y, Xu X Q 2013 Phys. Plasmas 20 052102Google Scholar

    [23]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [24]

    Xu X Q, Dudson B D, Snyder P B, Umansky M V, Wilson H R, Casper T 2011 Nucl. Fusion 51 103040Google Scholar

    [25]

    Duan X R, Dong J Q, Yan L W, Ding X T, Yang Q W, Rao J, Liu D Q, Xuan W M, Chen L Y, Li X D, Lei G J, Cao J Y, Cao Z, Song X M, Huang Y, Liu Yi, Mao W C, Wang Q M, Cui Z Y, Ji X Q, Li B, Li G S, Li H J, Luo C W, Wang Y Q, Yao L H, Yao L Y, Zhang J H, Zhou J, Zhou Y, Liu Yong, HL-2A Team 2010 Nucl. Fusion 50 095011Google Scholar

    [26]

    Duan X R, Liu Yi, Xu M, et al., HL-2 A Team. 2017 Nucl. Fusion 57 102013Google Scholar

    [27]

    Xu M, Duan X R Liu Yi, Song X M, et al., HL2A Team. 2019 Nucl. Fusion 59 112017Google Scholar

    [28]

    Xiao G L, Zhong W L, Zhang Y P, et al., HL-2A Team. 2020 J. Fusion Energy 39 300Google Scholar

    [29]

    Tang T F, Shi H, Wang Z H, Zhong W L, Xia T Y, Xu X Q, Sun J Z, Wang D Z 2018 Phys. Plasmas 25 122510Google Scholar

    [30]

    Wu N, Chen S Y, Mou M L Tang C J, Song X M, Yang Z C, Yu D L, Xu J Q, Jiang M, Ji X Q, Wang S, Li B, Liu L, HL-2 A Team 2018 Phys. Plasmas 25 102505Google Scholar

    [31]

    Ma J F, Xu X Q, Dudson B D 2014 Nucl. Fusion 54 033011Google Scholar

    [32]

    Xi P W, Xu X Q, Xia T Y, Nevins W M, Kim S S 2013 Nucl. Fusion 53 113020Google Scholar

    [33]

    Lortz D 1975 Nucl. Fusion 15 49Google Scholar

    [34]

    Huang Y Q, Xia T Y, Gui B 2018 Plasma Sci. Technol. 20 045101Google Scholar

    [35]

    简翔 2018 博士学位论文 (武汉: 华中科技大学)

    Jian X 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

  • 图 1  模拟区域内的归一化极向磁通分布

    Fig. 1.  Normalized poloidal magnetic flux in the simulated region.

    图 2  台基高度${\beta _{\rm t}} = 6.0 \times {10^{ - 3}}$, 台基宽度${\varDelta _\psi }$= 0.088时的压强(a) 、平行电流和安全因子(b)剖面

    Fig. 2.  Pressure (a), parallel current density and safety factor profiles (b) with pedestal height${\beta _{\rm t}} = 6.0 \times {10^{ - 3}}$and pedestal width ${\varDelta _\psi }$ = 0.088.

    图 3  利用不同分辨率的网格得出的线性增长率

    Fig. 3.  Linear growth rates corresponding to different resolutions.

    图 4  台基高度${\beta _{\rm{t}}}$$2.0\times {10}^{-3},\, 3.0\times {10}^{-3}$$4.0\times {10}^{-3} $, 台基宽度${\varDelta _\psi }$为0.066, 0.077, 0.088, 0.099和0.110时的压强(a) 、平行电流和安全因子(b)(c)剖面

    Fig. 4.  Pressure (a), parallel current density and safety factor profiles (b)(c) with pedestal heights ${\beta _{\rm t}}$ of $2.0 \times {10^{ - 3}}, $$ 3{\text{.0}} \times {10^{ - 3}}$ and $4.0 \times {10^{ - 3}}$, and pedestal widths ${\varDelta _\psi }$ of 0.066, 0.077, 0.088, 0.099 and 0.110.

    图 5  理想MHD线性增长率 (a) 台基高度${\beta _{\rm t}}$分别为$2.0\times {10}^{-3},\, 3.0\times {10}^{-3}$和4.0 × 10–3, 台基宽度${\varDelta _\psi }$ = 0.110; (b) 台基高度$ {\beta _{\rm t}} = 3.0 \times {10^{ - 3}} $, 台基宽度${\varDelta _\psi }$分别为0.066, 0.077, 0.088, 0.099和0.110

    Fig. 5.  Linear growth rates with different pedestals: (a) Pedestal heights ${\beta _{\rm t}}$ are $2.0 \times {10^{ - 3}}$, ${\text{3}}{\text{.0}} \times {10^{ - 3}}$and $4.0 \times {10^{ - 3}}$, while pedestal width ${\varDelta _\psi }$ is 0.110; (b) pedestal height ${\beta _{\rm t}}$ is ${\text{3}}{\text{.0}} \times {10^{ - 3}}$ while pedestal widths ${\varDelta _\psi }$ are 0.066, 0.077, 0.088, 0.099 and 0.110.

    图 6  临界台基高度${\beta _{\rm t}}$随台基宽度${\varDelta _\psi }$的变化

    Fig. 6.  The critical pedestal heights ${\beta _{\rm t}}$ corresponding to different pedestal widths ${\varDelta _\psi }$.

    图 7  (a) 台基高度${\beta _{\rm t}}$分别为$3.0 \times {10^{ - 3}},\, {\text{ }}4.0 \times {10^{ - 3}}, $$ {\text{ }}5.0 \times {10^{ - 3}}$$ 6.0 \times {10^{ - 3}} $, 台基宽度${\varDelta _\psi }$为 0.066, $ n = 15 $的归一化径向模结构; (b) 台基高度$ {\beta _{\rm t}} = 4.0 \times {10^{ - 3}} $, 台基宽度${\varDelta _\psi }$分别为0.066, 0.077, 0.088和0.099, $ n = 15 $的归一化径向模结构; (c) 台基高度$ {\beta _{\rm t}} = 4.0 \times $$ {10^{ - 3}} $, 台基宽度${\varDelta _\psi }$= 0.066, $ n = 15 $的归一化二维模结构

    Fig. 7.  (a) The normalized radial mode structure of $ n = 15 $ when pedestal heights ${\beta _{\rm t}}$ are $3.0 \times {10^{ - 3}},\, 4{\text{.0}} \times {10^{ - 3}},\,5.0 \times $$ {10^{ - 3}}$ and $6.0 \times {10^{ - 3}}$, while pedestal width ${\varDelta _\psi }$is 0.088; (b) the normalized radial mode structure of $ n = 15 $when pedestal height $ {\beta _{\rm t}} $ is $ 4.0 \times {10^{ - 3}} $, pedestal widths ${\varDelta _\psi }$ are 0.066, 0.077, 0.088 and 0.099 respectively; (c) the normalized two-dimensional mode structure of $ n = 15 $ when pedestal height ${\beta _{\rm t}}$ is $ 4.0 \times {10^{ - 3}} $ and pedestal width ${\varDelta _\psi }$is $0.066$

    图 8  台基高度${\beta _{\rm t}} = 4.0 \times {10^{ - 3}}$、台基宽度${\varDelta _\psi }$= 0.066 时的压强、安全因子(a)和平行电流(b)剖面

    Fig. 8.  Pressure, safety factor (a) and parallel current density profiles (b) with pedestal height${\beta _{\rm t}} = 4.0 \times {10^{ - 3}}$and pedestal width ${\varDelta _\psi }$= 0.066.

    图 9  (a) 不同安全因子的条件下, 剥离-气球模(PBM)稳定性限制下的台基高度和宽度的关系, 以及动理学气球模(KBM)稳定性限制下的台基高度和宽度的关系, 两者的交点即为台基高度和宽度的预测值; (b) 剥离-气球模(PBM)稳定性约束拟合直线的斜率$k$和截距$b$${q_{95}}$的变化

    Fig. 9.  (a) Relationship between the pedestal height and width under the stability constraints of peeling-ballooning mode (PBM), and relationship between the pedestal height and width under the stability of constraint of kinetic ballooning mode (KBM), the insterection of the two is the predicted value of pedestal height and width; (b) the slope $k$ and intercept $b$ of the fitting lines with the stability constraints of peeling-ballooning model (PBM) vary with ${q_{95}}$.

    图 10  在考虑抗磁效应时, 具有不同离子密度的剥离-气球模增长率, 台基高度${\beta _{\rm t}} = 4.0 \times {10^{ - 3}}$, 台基宽度${\varDelta _\psi }$= 0.066

    Fig. 10.  When the diamagnetic drift effect is included, linear growth rates of peeling-ballooning modes with different ion densities, while pedestal height ${\beta _{\rm t} } = 4.0 \times {10^{ - 3}}$and pedestal width ${\varDelta _\psi }$= 0.066.

    图 11  不同台基结构和安全因子剖面的ELM尺寸 (a) 台基高度$ {\beta _{\rm t} } $分别为$ 2.0 \times {10^{ - 3}} $、2.5$ \times {10^{ - 3}} $$ 3.0 \times {10^{ - 3}} $, 台基宽度${\varDelta _\psi }$分别为0.066, 0.077和0.088, 安全因子剖面为图8(a)中的$ {q_3} $; (b) 台基高度${\beta _{\rm t} } = 3.0 \times {10^{ - 3}}$, 台基宽度${\varDelta _\psi }$= 0.088, 安全因子剖面分别为图8(a)中的$ {q_3} $$ {q_4} $${q_5}$

    Fig. 11.  ELM size corresponding to different pedestal structures and safety factor profiles: (a) ${\beta _{\rm t} }$ are $ 2.0 \times {10^{ - 3}} $, $ 2.5 \times {10^{ - 3}} $ and $3.0 \times {10^{ - 3}}$, ${\varDelta _\psi }$ = 0.066, 0.077, 0.088, while safety factor profile is the ${q_3}$ profile in Fig. 8(a); (b) ${\beta _{\rm t} }$ is $3.0 \times {10^{ - 3}}$, ${\varDelta _\psi }$is $0.088$, while safety factor profiles are the ${q_3}$, ${q_4}$ and ${q_5}$ profiles in Fig. 8(a).

    图 12  当台基高度${\beta _{\rm t} } = 3.0 \times {10^{ - 3}}$, 台基宽度${\varDelta _\psi }$= 0.088, 安全因子剖面为图8(a)中的${q_4}$时, 归一化的扰动压强在径向$\psi $和环向$\zeta $平面随时间的演化

    Fig. 12.  Evolution of pressure perturbation in the frame of normalized poloidal flux $\psi $and toroidal angle $\zeta $ with pedestal height ${\beta _{\rm t} } = 3.0 \times {10^{ - 3}}$ and pedestal width ${\varDelta _\psi }$ = 0.088, while safety factor profile is the ${q_4}$ profile in figure 8(a).

    图 13  固定台基高度${\beta _{\rm t}} = 3.0 \times {10^{ - 3}}$, 当台基宽度和安全因子剖面不同时, 外中平面处归一化的扰动压强均方根随时间的演化

    Fig. 13.  Time evolution of the root-mean-square of pressure perturbation at the outer mid-plane with ${\beta _{\rm t}} = 3.0 \times {10^{ - 3}}$, different pedestal widths and safety factor profiles.

    图 14  不同台基结构和安全因子剖面时扰动的环向傅里叶分解图

    Fig. 14.  Toroidal Fourier analysis of the perturbation with different pedestal structures and safety factor profiles.

    图 15  不同台基结构和安全因子剖面的等离子体归一化的主导模随时间的演化

    Fig. 15.  Time evolution of normalized dominant toroidal modes with different pedestal structures and safety factor profiles.

    图 16  当台基结构和安全因子剖面不同时, $t = 195{\tau _{\rm A} }$时刻归一化扰动压强在径向$\psi $和环向$\zeta $平面上的分布

    Fig. 16.  Pressure perturbation in the frame of normalized poloidal flux $\psi $ and toroidal angle $\zeta $ with different pedestal structures and safety factor profiles at $t = 195{\tau _{\rm A} }$.

    图 17  固定台基高度${\beta _{\rm t}} = 3.0 \times {10^{ - 3}}$和台基宽度${\varDelta _\psi }$ = 0.088, 当安全因子剖面不同时, 非线性模拟中$t = 195{\tau _{\rm A} }$时刻磁面平均的总压强分布

    Fig. 17.  Fixed ${\beta _{\rm t}} = 3.0 \times {10^{ - 3}}$, ${\varDelta _\psi }$ = 0.088, when safety factor profiles are different, the surface-averaged pressure profiles distribution at $t = 195{\tau _{\rm A}}$ in the nonlinear simulations.

  • [1]

    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175Google Scholar

    [2]

    Aymar R, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519Google Scholar

    [3]

    Neuhauser J, Alexander M, Becker G, et al. 1995 Plasma Phys. Control. Fusion 37 A37Google Scholar

    [4]

    Groebner R J, Osborne T H 1998 Phys. Plasmas 5 1800Google Scholar

    [5]

    Connor J W, Hastie R J, Wilson H R, Miller R L 1998 Phys. Plasmas 5 2687Google Scholar

    [6]

    Wu N, Chen S Y, Mou M L, Tang C J 2018 Phys. Plasmas 25 092305Google Scholar

    [7]

    Sun C K, Xu X Q, Ma C H, Li B 2018 Phys. Plasmas 25 082106Google Scholar

    [8]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [9]

    Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin A, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M 2003 J. Nucl. Mater. 313-316 11Google Scholar

    [10]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [11]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Mossessian D, Murakami M, Osborne T H, Turnbull A D, Xu X Q 2004 Nucl. Fusion 44 320Google Scholar

    [12]

    Wilson H R, Snyder P B, Huysmans G T A, Miller R L 2002 Phys. Plasmas 9 1277Google Scholar

    [13]

    Chance M S, Chu M S, Okabayashi M, Turnbull A D 2002 Nucl. Fusion 42 295Google Scholar

    [14]

    Huysmans G T A, Sharapov S E, Mikhailovskii A B, Kerner W 2001 Phys. Plasmas 8 4292Google Scholar

    [15]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [16]

    Snyder P B, Aiba N, Beurskens M, Groebner R J, Horton L D, Hubbard A E, Hughes J W, Huysmans G T A, Kamada Y, Kirk A, Konz C, Leonard A W, Lönnroth J, Maggi C F, Maingi R, Osborne T H, Oyama N, Pankin A, Saarelma S, Saibene G, Terry J L, Urano H, Wilson H R 2009 Nucl. Fusion 49 085035Google Scholar

    [17]

    Snyder P B, Groebner R J, Hughes J W, Osborne T H, Beurskens M, Leonard A W, Wilson H R, Xu X Q 2011 Nucl. Fusion 51 103016Google Scholar

    [18]

    Groebner R J, Chang C S, Hughes J W, et al. 2013 Nucl. Fusion 53 093024Google Scholar

    [19]

    李凯 2020 博士学位论文 (合肥: 中国科学技术大学)

    Li K 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [20]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [21]

    Xia T Y, Xu X Q, Dudson B D, Li J 2012 Contrib. Plasma Phys. 52 353Google Scholar

    [22]

    Xia T Y, Xu X Q 2013 Phys. Plasmas 20 052102Google Scholar

    [23]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [24]

    Xu X Q, Dudson B D, Snyder P B, Umansky M V, Wilson H R, Casper T 2011 Nucl. Fusion 51 103040Google Scholar

    [25]

    Duan X R, Dong J Q, Yan L W, Ding X T, Yang Q W, Rao J, Liu D Q, Xuan W M, Chen L Y, Li X D, Lei G J, Cao J Y, Cao Z, Song X M, Huang Y, Liu Yi, Mao W C, Wang Q M, Cui Z Y, Ji X Q, Li B, Li G S, Li H J, Luo C W, Wang Y Q, Yao L H, Yao L Y, Zhang J H, Zhou J, Zhou Y, Liu Yong, HL-2A Team 2010 Nucl. Fusion 50 095011Google Scholar

    [26]

    Duan X R, Liu Yi, Xu M, et al., HL-2 A Team. 2017 Nucl. Fusion 57 102013Google Scholar

    [27]

    Xu M, Duan X R Liu Yi, Song X M, et al., HL2A Team. 2019 Nucl. Fusion 59 112017Google Scholar

    [28]

    Xiao G L, Zhong W L, Zhang Y P, et al., HL-2A Team. 2020 J. Fusion Energy 39 300Google Scholar

    [29]

    Tang T F, Shi H, Wang Z H, Zhong W L, Xia T Y, Xu X Q, Sun J Z, Wang D Z 2018 Phys. Plasmas 25 122510Google Scholar

    [30]

    Wu N, Chen S Y, Mou M L Tang C J, Song X M, Yang Z C, Yu D L, Xu J Q, Jiang M, Ji X Q, Wang S, Li B, Liu L, HL-2 A Team 2018 Phys. Plasmas 25 102505Google Scholar

    [31]

    Ma J F, Xu X Q, Dudson B D 2014 Nucl. Fusion 54 033011Google Scholar

    [32]

    Xi P W, Xu X Q, Xia T Y, Nevins W M, Kim S S 2013 Nucl. Fusion 53 113020Google Scholar

    [33]

    Lortz D 1975 Nucl. Fusion 15 49Google Scholar

    [34]

    Huang Y Q, Xia T Y, Gui B 2018 Plasma Sci. Technol. 20 045101Google Scholar

    [35]

    简翔 2018 博士学位论文 (武汉: 华中科技大学)

    Jian X 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] 樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建. 低杂波注入对剥离气球模的作用. 物理学报, 2024, 73(9): 095204. doi: 10.7498/aps.73.20240130
    [3] 李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴. HL-2A装置高βN双输运垒实验的集成分析. 物理学报, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [4] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究. 物理学报, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [5] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [6] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [7] 罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组. HL-2A上NBI加热H模实验的集成模拟分析. 物理学报, 2022, 71(7): 075201. doi: 10.7498/aps.71.20211941
    [8] 张洪铭, 吴静, 李佳鲜, 姚列明, 徐江城, 吴岩占, 刘旗艳, 郭鹏程. HL-2A高约束先进运行模式等离子体电流剖面集成模拟. 物理学报, 2021, 70(23): 235203. doi: 10.7498/aps.70.20210945
    [9] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [10] 刘春华, 聂林, 黄渊, 季小全, 余德良, 刘仪, 冯震, 姚可, 崔正英, 严龙文, 丁玄同, 董家齐, 段旭如. HL-2A托卡马克上的边缘局域模特性初步研究. 物理学报, 2012, 61(20): 205201. doi: 10.7498/aps.61.205201
    [11] 郑灵, 赵青, 周艳. HL-2A第一镜挡板防护效果模拟. 物理学报, 2011, 60(8): 085204. doi: 10.7498/aps.60.085204
    [12] 洪文玉, 严龙文, 赵开君, 兰 涛, 董家齐, 俞昌旋, 程 均, 钱 俊, 刘阿棣, 罗萃文, 徐征宇, 黄 渊, 杨青巍. HL-2A装置中的带状流三维特性研究和探针设计. 物理学报, 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [13] 游天雪, 袁保山, 李芳著. 用可移动电流丝方法重建HL-2A等离子体边界的研究. 物理学报, 2007, 56(9): 5323-5329. doi: 10.7498/aps.56.5323
    [14] 石中兵, 姚良骅, 丁玄同, 段旭如, 冯北滨, 刘泽田, 肖维文, 孙红娟, 李 旭, 李 伟, 陈程远, 焦一鸣. HL-2A托卡马克超声分子束注入深度和加料效果研究. 物理学报, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [15] 郑银甲, 黄 渊, 冯 震, 施 乐, 崔成和, 王明旭, 徐红兵. HL-2A托卡马克送气成像研究. 物理学报, 2007, 56(3): 1452-1460. doi: 10.7498/aps.56.1452
    [16] 袁保山, 游天雪, 刘 莉, 李芳著, 杨青巍, 冯北滨. HL-2A等离子体形状实时显示系统. 物理学报, 2006, 55(5): 2403-2408. doi: 10.7498/aps.55.2403
    [17] 袁保山, 游天雪, 秦运文, 冯北滨, 季小全. HL-2A等离子体约束参数的实时确定. 物理学报, 2006, 55(3): 1315-1319. doi: 10.7498/aps.55.1315
    [18] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型. 物理学报, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [19] 王中天. 非圆截面等离子体MHD不稳定性的研究. 物理学报, 1981, 30(5): 573-583. doi: 10.7498/aps.30.573
    [20] 王中天. 内扭曲模稳定性的充分判据. 物理学报, 1979, 28(5): 135-139. doi: 10.7498/aps.28.135
计量
  • 文章访问数:  5038
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-07-31
  • 上网日期:  2022-11-08
  • 刊出日期:  2022-11-20

/

返回文章
返回