搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高密度等离子体喷流高速对撞的二维辐射流体模拟研究

杨孟奇 吴福源 陈致博 张翼翔 陈一 张晋川 陈致真 方志凡 Rafael Ramis 张杰

引用本文:
Citation:

高密度等离子体喷流高速对撞的二维辐射流体模拟研究

杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰

Two-dimensional radiation hydrodynamic simulations of high-speed head-on collisions between high-density plasma jets

Yang Meng-Qi, Wu Fu-Yuan, Chen Zhi-Bo, Zhang Yi-Xiang, Chen Yi, Zhang Jin-Chuan, Chen Zhi-Zhen, Fang Zhi-Fan, Rafael Ramis, Zhang Jie
PDF
HTML
导出引用
  • 等离子体喷流对撞是天体物理和激光等离子体物理中常见的流体力学现象. 构建对撞等离子体状态和喷流初始条件的流体定标关系, 对于相关实验的物理设计和数据分析具有重要意义. 本文采用最新升级的二维自由拉格朗日辐射流体模拟程序MULTI-2D, 研究了高速(≥100 km/s)、高密度(≥10 g/cm3)条件下的喷流对撞过程. 基于不同条件下等离子体喷流高速对撞过程的模拟数据, 通过机器学习中的贝叶斯推断方法构建了描述等离子体喷流对撞过程的流体定标规律. 研究结果表明: 锥形等离子体喷流对撞易于形成等容分布的高密度等离子体; 提高喷流的初始密度和速度, 有利于提高对撞等离子体的密度和温度; 提高喷流的初始温度, 有利于提高对撞后的温度, 但会降低对撞后的等离子体密度. 当等离子体喷流的初始密度、温度和速度分别设定为15 g/cm3, 30 eV和300 km/s时, 对撞后的等离子体密度可以达到300 g/cm3以上, 这对于双锥对撞点火方案中的快电子加热过程非常重要.
    Head-on collisions of plasma jets are common hydrodynamic phenomena in astrophysical and laser-plasma interaction processes. Deriving scaling relationships between colliding plasmas and initial conditions of plasma jets is of great significance in optimizing the design and the data analysis of the relevant experiments. Double-cone ignition (DCI) scheme is an excellent platform for studying plasma jets’ collision, since the collision between high-speed, high-density plasma jets can be easily generated and characterized in both simulations and experiments.In this work, we employ the upgraded two-dimensional arbitrary Eulerian-Lagrange (ALE) program MULTI-2D to simulate the collision process of plasma jets with high speed (≥100 km/s) and high density (≥10 g/cm3). Using the database obtained from the simulations, hydrodynamic scaling laws describing the collision process of plasma jets are derived by the Bayesian inference method in machine learning. The Bayesian inference method not only has the parameter estimation function of traditional least square method, but also possesses other potential advantages such as giving the probability distribution of estimated parameters. Numerical results show that the collision of plasma jets with open boundaries is easy to form an isochoric plasma distribution with high-density. Increasing the initial density and velocity of the plasma jet is helpful in enhancing the density and temperature of the colliding plasma. Increasing the initial temperature of plasma jet is beneficial to achieving colliding plasmas with a higher temperature, while leading plasma density and pressure to decrease after head-on collision. When the initial density, temperature and velocity of the plasma jets are set to be 15 g/cm3, 30 eV and 300 km/s, respectively, the colliding plasma density can reach more than 300 g/cm3. This is very favorable for the following fast electron heating process in the double-cone ignition (DCI) scheme.The issue about quantum degeneracy after collision is discussed in this work. Under the typical initial conditions of plasma jets in DCI scheme ($100\,\,\rm{km}/\mathrm{s}\leqslant {V}_{0}\leqslant 500\,\,\rm{km}/\mathrm{s},10\,\,\rm{eV}\leqslant {T}_{0}\leqslant 100\,\,\rm{eV},10\,\,\mathrm{g}/\mathrm{c}\mathrm{m}^3\leqslant {\rho }_{0}\leqslant 50\,\,\mathrm{g}/\mathrm{c}\mathrm{m}^3)$, both quantum degenerate plasma and classical non-degenerate plasma can be obtained in a temperature range between $ 0.3{T}_{F} $ (Fermi temperature) and $ 3{T}_{F} $. By comparing the plasma temperature with the Fermi temperature of the collision, the criterion for achieving quantum degenerate plasma or non-degenerate plasma under given initial conditions is obtained with the help of the derived hydrodynamic scaling laws. The criterion shows that higher initial velocity, higher temperature and lower density of plasma jets are required if we want to obtain non-degenerate plasma after collision.
      通信作者: 吴福源, fuyuan.wu@sjtu.edu.cn ; 张杰, jzhang1@sjtu.edu.cn
    • 基金项目: 中国科学院战略性科技先导专项(批准号: XDA25051200)和上海交通大学新进青年教师启动计划(批准号: 21X010500627)资助的课题.
      Corresponding author: Wu Fu-Yuan, fuyuan.wu@sjtu.edu.cn ; Zhang Jie, jzhang1@sjtu.edu.cn
    • Funds: This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25051200), and Startup Fund for Young Faculty at SJTU (Grant No. 21X010500627).
    [1]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Béard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S 2014 Science 346 325Google Scholar

    [2]

    Li C, Ryutov D, Hu S, Rosenberg M, Zylstra A, Séguin F, Frenje J, Casey D, Johnson M G, Manuel M-E 2013 Phys. Rev. Lett. 111 235003Google Scholar

    [3]

    Yin C L, Li Y T, Lu X, Yuan D W, Zhong J Y, Yuan X H, Wei H G, Zhang K, Fang Y, Liao G Q, Su L N, Han B, Wang F L, Liang G Y, Yang S, Zhu J Q, Zhao G, Zhang J 2015 High Power Laser Part. Beams 27 032035Google Scholar

    [4]

    裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 物理学报 14 145201Google Scholar

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 14 145201Google Scholar

    [5]

    Ke Y, Yang X, Ma Y, Xu B, Ge Z, Gan L, Meng L, Wang S, Kawata S 2018 Phys. Plasmas 25 042706Google Scholar

    [6]

    Lebedev S, Chittenden J, Beg F, Bland S, Ciardi A, Ampleford D, Hughes S, Haines M, Frank A, Blackman E 2002 Astrophys. J. 564 113Google Scholar

    [7]

    Zylstra A, Hurricane O, Callahan D, Kritcher A, Ralph J, Robey H, Ross J, Young C, Baker K, Casey D 2022 Nature 601 542Google Scholar

    [8]

    Lan K, Dong Y, Wu J, Li Z, Chen Y, Cao H, Hao L, Li S, Ren G, Jiang W 2021 Phys. Rev. Lett. 127 245001Google Scholar

    [9]

    Tabak M, Clark D, Hatchett S, Key M, Lasinski B, Snavely R, Wilks S, Town R, Stephens R, Campbell E 2005 Phys. Plasmas 12 057305Google Scholar

    [10]

    Murakami M, Nagatomo H, Johzaki T, Sakaiya T, Velikovich A, Karasik M, Gus' Kov S, Zmitrenko N 2014 Nucl. Fusion 54 054007Google Scholar

    [11]

    Hurricane O, Casey D, Landen O, Kritcher A, Nora R, Patel P, Gaffney J, Humbird K, Field J, Kruse M 2020 Phys. Plasmas 27 062704Google Scholar

    [12]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [13]

    Zhang J, Wang W, Yang X, Wu D, Ma Y, Jiao J, Zhang Z, Wu F, Yuan X, Li Y 2020 Philos. T. R. Soc. A 378 20200015Google Scholar

    [14]

    方可, 张喆, 李玉同, 张杰 2022 物理学报 71 035204Google Scholar

    Fang K, Zhang Z, Li Y T, Zhang J 2022 Acta Phys. Sin. 71 035204Google Scholar

    [15]

    Wu F, Yang X, Ma Y, Zhang Q, Zhang Z, Yuan X, Liu H, Liu Z, Zhong J, Zheng J 2022 High Power Laser Sci. Eng. 10 e10Google Scholar

    [16]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [17]

    Ramis R, Meyer-ter-Vehn J, Ramírez J 2009 Comput. Phys. Commun. 180 977Google Scholar

    [18]

    Wu F, Ramis R, Li Z 2018 J. Comput. Phys. 357 206Google Scholar

    [19]

    Ramis R, Canaud B, Temporal M, Garbett W J, Philippe F 2019 Matter Radiat. Extremes 4 055402Google Scholar

    [20]

    余波, 丁永坤, 蒋炜, 黄天晅, 陈伯伦, 蒲昱东, 晏骥, 陈忠靖, 张兴, 杨家敏 2017 物理学报 66 235201Google Scholar

    Yu B, Ding Y K, Jiang W, Huang T X, Chen B L, Pu Y D, Yan J, Chen Z J, Zhang X, Yang J M 2017 Acta Phys. Sin. 66 235201Google Scholar

    [21]

    陈忠旺, 宁成 2017 物理学报 66 125202Google Scholar

    Chen Z W, Ning C, 2017 Acta Phys. Sin. 66 125202Google Scholar

    [22]

    Wu F, Chu Y, Ramis R, Li Z, Ma Y, Yang J, Wang Z, Ye F, Huang Z, Qi J 2018 Matter Radiat. Extremes 3 248Google Scholar

    [23]

    Chen S J, Ma Y Y, Wu F Y, Yang X H, Yuan Y, Cui Y, Ramis R 2021 Chin. Phys. B 30 115201Google Scholar

    [24]

    Ramis R, Meyer-Ter-Vehn J 2014 Laser Part. Beams 32 41Google Scholar

    [25]

    Kemp A, Meyer-ter-Vehn J 1998 Nucl. Instrum. Meth. A 415 674Google Scholar

    [26]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [27]

    More R, Warren K, Young D, Zimmerman G 1988 Phys. Fluids 31 3059Google Scholar

    [28]

    Von Neumann J, Richtmyer R D 1950 J. Appl. Phys. 21 232Google Scholar

    [29]

    Noh W F 1987 J. Comput. Phys. 72 78Google Scholar

    [30]

    王瑞利, 林忠, 魏兰, 葛全文 2007 计算物理 24 407Google Scholar

    Wang R L, Lin Z, Wei L, Ge Q W, 2007 Chin. J. Comput. Phys. 24 407Google Scholar

    [31]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press), pp38, 330

    [32]

    Chabrier G, Douchin F, Potekhin A 2002 J. Phys. Condens. Mat. 14 9133Google Scholar

    [33]

    Haas F 2005 Phys. Plasmas 12 062117Google Scholar

    [34]

    Salvatier J, Wiecki T V, Fonnesbeck C 2016 PeerJ Comput. Sci. 2 e55Google Scholar

    [35]

    Gopalaswamy V, Betti R, Knauer J, Luciani N, Patel D, Woo K, Bose A, Igumenshchev I, Campbell E, Anderson K 2019 Nature 565 581Google Scholar

  • 图 1  不同时刻锥形等离子体喷流对撞的密度和温度分布图

    Fig. 1.  Density and temperature distributions of conical plasma jets at different times during the collision.

    图 2  锥形喷流对撞过程中的等离子体状态在温度-密度相图上的运动轨迹, 箭头表示时间的增大方向, 橙色直线表示不同密度对应的费米温度

    Fig. 2.  The trajectory of the plasma jet on the temperature-density phase diagram during the collision, the arrow in the Fig. indicates the increasing direction of time, and the orange line indicates the Fermi temperature at different densities.

    图 3  对撞过程中快点火方向面密度、峰值压强和对撞区归一化X射线辐射功率随时间变化曲线

    Fig. 3.  Time evolution of areal density, peak pressure in fast ignition direction and normalized X-ray radiation emission power in collision area.

    图 4  对撞等离子体参数随喷流初始条件的变化曲线 (a) V0 = 300 km/s, T0 = 30 keV; (b) ρ0 = 15 g/cm3, T0 = 30 keV; (c) ρ0 = 15 g/cm3, V0 = 300 km/s

    Fig. 4.  Variations of colliding plasma parameters with the initial conditions of plasma jets: (a) V0 = 300 km/s, T0 = 30 keV; (b) ρ0 = 15 g/cm3, T0 = 30 keV; (c) ρ0 = 15 g/cm3, V0 = 300 km/s.

    图 5  喷流初始密度为15 g/cm3时, 不同初始温度和初始速度获得的对撞等离子体状态, 橙线表示费米温度随密度的变化曲线, 箭头表示喷流初始速度相同时, 喷流初始温度的增大方向

    Fig. 5.  Colliding plasma states obtained at different initial temperatures and velocities when the initial jet density is 15 g/cm3, the orange line in the figure represents the variation curve of Fermi temperature with density, and the arrow represents the increasing direction of the initial temperature when the initial velocity is the same.

    图 6  (a) 贝叶斯推断得到的对撞密度定标关系, 橙色直线表示拟合数据和模拟数据完全一致时的参考线; (b) 相关参数的归一化概率分布灰色直线表示每个参数归一化概率分布对应的平均值位置

    Fig. 6.  (a) The calibration relationship of plasma density, the orange line represents the reference line when the fitting data is completely consistent with the simulation data; (b) the normalized probability distribution of relevant parameters inferred by Bayes, the gray line represents the average position corresponding to the normalized probability distribution of each parameter.

    图 7  对撞后的氘氚等离子体状态在压强-温度相图的分布

    Fig. 7.  The DT plasma states after collision in pressure-temperature phase diagram.

    表 1  对撞等离子体参数和喷流初始条件的流体力学定标关系

    Table 1.  Scaling laws between colliding plasma parameters and the initial conditions of plasma jets.

    对撞等离子体参数对撞等离子体参数和喷流初始
    参数的流体定标关系
    ρ/(g·cm–3)$ \rho {\text{ = }}0.074\rho _0^{0.74}V_0^{1.33}T_0^{ - 0.32} $
    ρR/(g·cm–2)$ \rho R{\text{ = }}0.002\rho _0^{0.85}V_0^{0.91}T_0^{ - 0.24} $
    T/eV$ T{\text{ = }}0.437\rho _0^{0.12}V_0^{1.16}T_0^{0.17} $
    P/Mbar$ P{\text{ = }}0.020\rho _0^{0.86}V_0^{2.56}T_0^{ - 0.21} $
    下载: 导出CSV
  • [1]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Béard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S 2014 Science 346 325Google Scholar

    [2]

    Li C, Ryutov D, Hu S, Rosenberg M, Zylstra A, Séguin F, Frenje J, Casey D, Johnson M G, Manuel M-E 2013 Phys. Rev. Lett. 111 235003Google Scholar

    [3]

    Yin C L, Li Y T, Lu X, Yuan D W, Zhong J Y, Yuan X H, Wei H G, Zhang K, Fang Y, Liao G Q, Su L N, Han B, Wang F L, Liang G Y, Yang S, Zhu J Q, Zhao G, Zhang J 2015 High Power Laser Part. Beams 27 032035Google Scholar

    [4]

    裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 物理学报 14 145201Google Scholar

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 14 145201Google Scholar

    [5]

    Ke Y, Yang X, Ma Y, Xu B, Ge Z, Gan L, Meng L, Wang S, Kawata S 2018 Phys. Plasmas 25 042706Google Scholar

    [6]

    Lebedev S, Chittenden J, Beg F, Bland S, Ciardi A, Ampleford D, Hughes S, Haines M, Frank A, Blackman E 2002 Astrophys. J. 564 113Google Scholar

    [7]

    Zylstra A, Hurricane O, Callahan D, Kritcher A, Ralph J, Robey H, Ross J, Young C, Baker K, Casey D 2022 Nature 601 542Google Scholar

    [8]

    Lan K, Dong Y, Wu J, Li Z, Chen Y, Cao H, Hao L, Li S, Ren G, Jiang W 2021 Phys. Rev. Lett. 127 245001Google Scholar

    [9]

    Tabak M, Clark D, Hatchett S, Key M, Lasinski B, Snavely R, Wilks S, Town R, Stephens R, Campbell E 2005 Phys. Plasmas 12 057305Google Scholar

    [10]

    Murakami M, Nagatomo H, Johzaki T, Sakaiya T, Velikovich A, Karasik M, Gus' Kov S, Zmitrenko N 2014 Nucl. Fusion 54 054007Google Scholar

    [11]

    Hurricane O, Casey D, Landen O, Kritcher A, Nora R, Patel P, Gaffney J, Humbird K, Field J, Kruse M 2020 Phys. Plasmas 27 062704Google Scholar

    [12]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [13]

    Zhang J, Wang W, Yang X, Wu D, Ma Y, Jiao J, Zhang Z, Wu F, Yuan X, Li Y 2020 Philos. T. R. Soc. A 378 20200015Google Scholar

    [14]

    方可, 张喆, 李玉同, 张杰 2022 物理学报 71 035204Google Scholar

    Fang K, Zhang Z, Li Y T, Zhang J 2022 Acta Phys. Sin. 71 035204Google Scholar

    [15]

    Wu F, Yang X, Ma Y, Zhang Q, Zhang Z, Yuan X, Liu H, Liu Z, Zhong J, Zheng J 2022 High Power Laser Sci. Eng. 10 e10Google Scholar

    [16]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [17]

    Ramis R, Meyer-ter-Vehn J, Ramírez J 2009 Comput. Phys. Commun. 180 977Google Scholar

    [18]

    Wu F, Ramis R, Li Z 2018 J. Comput. Phys. 357 206Google Scholar

    [19]

    Ramis R, Canaud B, Temporal M, Garbett W J, Philippe F 2019 Matter Radiat. Extremes 4 055402Google Scholar

    [20]

    余波, 丁永坤, 蒋炜, 黄天晅, 陈伯伦, 蒲昱东, 晏骥, 陈忠靖, 张兴, 杨家敏 2017 物理学报 66 235201Google Scholar

    Yu B, Ding Y K, Jiang W, Huang T X, Chen B L, Pu Y D, Yan J, Chen Z J, Zhang X, Yang J M 2017 Acta Phys. Sin. 66 235201Google Scholar

    [21]

    陈忠旺, 宁成 2017 物理学报 66 125202Google Scholar

    Chen Z W, Ning C, 2017 Acta Phys. Sin. 66 125202Google Scholar

    [22]

    Wu F, Chu Y, Ramis R, Li Z, Ma Y, Yang J, Wang Z, Ye F, Huang Z, Qi J 2018 Matter Radiat. Extremes 3 248Google Scholar

    [23]

    Chen S J, Ma Y Y, Wu F Y, Yang X H, Yuan Y, Cui Y, Ramis R 2021 Chin. Phys. B 30 115201Google Scholar

    [24]

    Ramis R, Meyer-Ter-Vehn J 2014 Laser Part. Beams 32 41Google Scholar

    [25]

    Kemp A, Meyer-ter-Vehn J 1998 Nucl. Instrum. Meth. A 415 674Google Scholar

    [26]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [27]

    More R, Warren K, Young D, Zimmerman G 1988 Phys. Fluids 31 3059Google Scholar

    [28]

    Von Neumann J, Richtmyer R D 1950 J. Appl. Phys. 21 232Google Scholar

    [29]

    Noh W F 1987 J. Comput. Phys. 72 78Google Scholar

    [30]

    王瑞利, 林忠, 魏兰, 葛全文 2007 计算物理 24 407Google Scholar

    Wang R L, Lin Z, Wei L, Ge Q W, 2007 Chin. J. Comput. Phys. 24 407Google Scholar

    [31]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press), pp38, 330

    [32]

    Chabrier G, Douchin F, Potekhin A 2002 J. Phys. Condens. Mat. 14 9133Google Scholar

    [33]

    Haas F 2005 Phys. Plasmas 12 062117Google Scholar

    [34]

    Salvatier J, Wiecki T V, Fonnesbeck C 2016 PeerJ Comput. Sci. 2 e55Google Scholar

    [35]

    Gopalaswamy V, Betti R, Knauer J, Luciani N, Patel D, Woo K, Bose A, Igumenshchev I, Campbell E, Anderson K 2019 Nature 565 581Google Scholar

  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望. 物理学报, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [3] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [4] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [5] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [6] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [7] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [8] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [9] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [10] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [11] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [12] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [13] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [14] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [15] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [16] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰. 超音速高密度喷流对撞过程中的高效能量转移. 物理学报, 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [17] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [18] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [19] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析. 物理学报, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
计量
  • 文章访问数:  5713
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-07-18
  • 上网日期:  2022-10-31
  • 刊出日期:  2022-11-20

/

返回文章
返回