搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杆箍缩二极管阳极杆粒子生成模型研究

屈俊夫 冯元伟 耿力东 李洪涛

引用本文:
Citation:

杆箍缩二极管阳极杆粒子生成模型研究

屈俊夫, 冯元伟, 耿力东, 李洪涛

Study on particle generation model of anode in rod-pinch diode

Qu Jun-Fu, Feng Yuan-Wei, Geng Li-Dong, Li Hong-Tao
PDF
HTML
导出引用
  • 杆箍缩二极管的模拟工作是指导杆箍缩二极管性能改进的重要工具,为提升模拟的准确性, 本文对阳极等离子体产生机制开展研究. 采用particle in cell和蒙特卡洛的模拟计算方法, 在杆箍缩二极管阳极离子发射模型的基础上, 根据空间电荷双极性流特性, 着重研究等离子体电子的作用, 提出阳极等离子体模型. 本文以目前的实验结果为基础, 以数值计算为主要手段对新模型进行了详细的分析, 并在杆箍缩二极管电流、杆箍缩二极管阴阳极间隙电场分布、电子能谱、电子入射阳极杆的运动状态、X射线剂量及成像焦斑计算等方面与阳极离子发射模型进行详细对比. 研究表明, 新模型计算结果更接近实验测量结果, 描述杆箍缩二极管物理过程不能忽视阳极等离子体电子的作用.
    Flash radiography technology is commonly used in detonation physics experiments and nondestructive testing, in which an X-ray diode is an integral part of flash radiography equipment. Its function is to convert the electric energy stored in the front power supply into X-rays through the bremsstrahlung effect. Rod-pinch diode is one of the most commonly used X-ray diodes in 1–4 MV. It has the characteristics of a small focal spot and high imaging resolution. The anode ions of the rod pinch diode come from the anode plasma, and the anode plasma electrons are generated at the same time as the anode plasma ions. Before the establishment of the bipolar current between the anode and cathode of the rod pinch diode, these electrons are mainly absorbed by the anode; however, after the formation of the bipolar current, due to the zero electric field on the anode surface, plasma electrons will accumulate near the anode surface and will not be absorbed. Given the theoretical derivation of bipolar current in the gap between anode and cathode of rod pinch diode in the early stage, it is necessary to study the electrons in anode plasma.The simulation of the rod-pinch diode is an essential tool for improving the performance of the rod-pinch diode. To improve simulation accuracy, it is necessary to study the emission mechanism of cathode and anode particles and continuously optimize the simulation model. In this paper, PIC and Monte Carlo simulation are used. An anode plasma model is proposed in this work based on the anode ion emission model of the rod-pinch diode and the characteristics of space charge bipolar flow, that is, when the anode plasma environment is fully established, the electric field on the anode surface is zero, and ions and electrons will accumulate on the anode surface. The new model is analyzed in detail and compared with the anode ion emission model in rod-pinch diode current, electromagnetic field distribution between cathode and anode, electron energy spectrum, motion state of electron incident anode rod, dose, and spot size. The results show that the calculation results from the new model are closer to the experimental results, which shows that the role of electrons accumulated near the anode in the plasma cannot be ignored in the numerical calculation of the rod-pinch diode anode rod surface plasma.
      通信作者: 李洪涛, zj680525@21cn.com
      Corresponding author: Li Hong-Tao, zj680525@21cn.com
    [1]

    刘军 2008 博士学位论文 (北京: 中国工程物理研究院)

    Liu J 2008 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [2]

    张寿云 1985 爆炸与冲击 5 89

    Zhang S Y 1985 Explos. Shock Waves 5 89

    [3]

    Duff R E, Knight H T 1956 J. Chem. Phys. 25 1301

    [4]

    耿力东, 何泱, 袁建强, 王敏华, 曹龙博, 谢卫平 2018 强激光与粒子束 30 115003Google Scholar

    Geng L D, He Y, Yuan J Q, Wang M H, Cao L B, Xie W P 2018 High Power Laser Part. Beams 30 115003Google Scholar

    [5]

    Commisso R J, Cooperstein G, Hinshelwood D D, Mosher D, Young F C 2002 IEEE Trans. Plasma Sci. 30 338Google Scholar

    [6]

    陈林, 姜巍, 谢卫平, 邓建军 2007 强激光与粒子束 19 1747

    Chen L, Jiang W, Xie W P, Deng J J 2007 High Power Laser Part. Beams 19 1747

    [7]

    高屹, 邱爱慈, 吕敏, 杨海亮, 张众, 张鹏飞 2010 核技术 33 5

    Gao Y, Qiu A C, Lü M, Yang H L, Zhang Z, Zhang P F 2010 Nucl. Tech. 33 5

    [8]

    Hinshelwood D D, Cooperstein G, Mosher D, Ottinger P F, Schumer J W, Stephanakis S J, Swanekamp S B, Weber B V, Young F C 2002 Am. Inst. Phys. Conf. Proc. 650 203

    [9]

    孙剑锋, 孙江, 邱爱慈, 张鹏飞, 杨海亮, 李静雅, 尹佳辉, 胡杨, 金亮 2014 强激光与粒子束 26 276Google Scholar

    Sun J F, Sun J, Qiu A C, Zhang P F, Yang H L, Li J Y, Yin J H, Hu Y, Jin L 2014 High Power Laser Part. Beams 26 276Google Scholar

    [10]

    孙江, 孙剑锋, 杨海亮, 张鹏飞, 苏兆锋, 周军 2013 现代应用物理 1 18Google Scholar

    Sun J, Sun J F, Yang H L, Zhang P F, Su Z F, Zhou J 2013 Mod. Appl. Phys. 1 18Google Scholar

    [11]

    Weber B V, Allen R, Comrmsso R J, Cooperstein G, Hinshelwood D D, Mosher D, Murphy D P, Ottinger PF, Phipps D G, Schumer J W 2007 IEEE 34th International Conference on Plasma Science (ICOPS) Albuquerque, NM, USA, June 17–22, 2007 p440

    [12]

    Sorokin S A 2010 Tech. Phys. Lett. 36 379Google Scholar

    [13]

    Weber B V, Cooperstein G, Hinshelwood D D, Mosher D, Schumer J W, Stephanakis S J, Strasburg S B, Swanekamp S B, Young F C 2002 AIP Conf. Proc. 650 191Google Scholar

    [14]

    徐启福 2012 博士学位论文 (长沙: 国防科学技术大学)

    Xu Q F 2012 Ph. D. Dissertation (Chang Sha: National University of Defense Science and technology) (in Chinese)

    [15]

    Poukey J W 1975 Appl. Phys. Lett. 26 145Google Scholar

    [16]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 付佳斌, 赵小明, 何泱 2018 强激光与粒子束 30 085003Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Fu J B, Zhao X M, He Y 2018 High Power Laser Part. Beams 30 085003Google Scholar

    [17]

    Miller C L, Welch D R, Rose D V, Oliver B V 2010 IEEE Trans. Plasma Sci. 38 2507Google Scholar

    [18]

    王宇, 李洪涛, 王文斗, 邓建军, 刘金峰, 马成刚 2015 强激光与粒子束 27 095005Google Scholar

    Wang Y, Li H T, Wang W D, Deng J J, Liu J F, Ma C G 2015 High Power Laser Part. Beams 27 095005Google Scholar

    [19]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 张思群, 赵小明, 何泱 2018 原子能科学技术 52 1512Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Zhang S Q, Zhao X M, He Y 2018 At. Energy Sci. Technol. 52 1512Google Scholar

    [20]

    Xie W, Xia M, Guo F, Geng L, Zhao Y, Xu L, Feng S, Zhou L, Wei B, He A, Yuan J, Chen L, Li H, Han W, Jiang J, Li F, Wang Z, Li Y, Kang J, Zhang Y, Wu W, Wang M, Zou W 2021 Phys. Rev. Accel. Beams 24 110401Google Scholar

    [21]

    Zhou J, Liu D, Chen L, Li Z 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar

    [22]

    Perl J, Shin J, Schümann J, Faddegon B, Paganetti H 2012 Med. Phys. 39 6818Google Scholar

    [23]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar

    [25]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res. , Sect. A 506 250Google Scholar

    [26]

    李成刚 2015 博士学位论文 (北京: 中国工程物理研究院)

    Li C G 2015 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

  • 图 1  电子相空间分布 (a) 阴极电子爆炸发射的模型; (b) 阴极电子-阳极离子发射模型; (c) 阴极电子-阳极等离子体模型

    Fig. 1.  Spatial distribution of electron phase: (a) Model of cathode electron explosion emission; (b) Cathode electron anode ion emission model; (c) Cathode electron anode plasma model.

    图 2  研究流程图

    Fig. 2.  Research flow chart.

    图 3  杆箍缩二极管电压、电流位置示意图(a)与D-dot探头标定结果(b)

    Fig. 3.  Schematic diagram of D-dot, B-dot position of Rod-pinch diode (a) and D-dot calibration results (b).

    图 4  4—54发实验在50 ns各物理量空间分布图 (a) A模型电子空间分布; (b) B模型电子空间分布; (c) A模型Bphi空间分布; (d) B模型Bphi空间分布; (e) A模型Er空间分布; (f) B模型Er空间分布; (g) A模型Ez空间分布; (h) B模型Ez空间分布(图中白色部分为超量程值)

    Fig. 4.  4–54 Experiments in 50 ns each physical quantity spatial distribution diagram: (a) A model electronic spatial distribution; (b) B model electronic spatial distribution; (c) A model Bphi spatial distribution; (d) B model Bphi spatial distribution; (E) A model Er spatial distribution; (f) B model Er spatial distribution; (g) A model EZ spatial distribution; (H) B model EZ spatial distribution (The white part in the Figure is the over range value).

    图 5  1—4 MV杆箍缩二极管阳极入射电子能谱 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Fig. 5.  Incident electron spectrum of 1–4 MV rod-pinch diode anode: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 6  1—4 MV杆箍缩二极管阳极入射电子位置 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Fig. 6.  1–4 MV rod-pinch diode anode incident electron position: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 7  入射角示意图

    Fig. 7.  Schematic diagram of incident angle.

    图 8  1—4 MV杆箍缩二极管阳极侧面入射电子角度分布 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Fig. 8.  Angle distribution of incident electrons on the anode side of 1–4 MV rod pinch diode: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 9  1—4 MV杆箍缩二极管阳极端面入射电子角度分布 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Fig. 9.  Angle distribution of incident electrons on the anode end face of 1–4 MV rod pinch diode: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 10  针孔成像法焦斑计算示意图

    Fig. 10.  Schematic diagram of focal spot calculation of pinhole imaging method.

    图 11  模型焦斑图像 (a) 等离子体模型焦斑图像; (b) 离子模型焦斑图像

    Fig. 11.  Model focal spot images: (a) Plasma model focal spot image; (b) Ion model focal spot image.

    图 12  (a) 等离子体模型焦斑高斯拟合曲线; (b) 离子模型焦斑高斯拟合曲线

    Fig. 12.  (a) Gaussian fitting curve of plasma model; (b) Gaussian fitting curve of ion model.

    表 1  杆箍缩二极管1—4 MV实验结果

    Table 1.  Results of Rod-pinch diode 1–4 MV experiment.

    发次/No.电压/MV电流/kA剂量/radrC/mmL/mm
    1—61.4257.001.236.0010.00
    4—542.0658.803.607.0010.00
    4—623.1373.709.509.0010.00
    4—814.1098.5016.609.0016.00
    下载: 导出CSV

    表 2  杆箍缩二极管电流实验与模拟结果

    Table 2.  Experimental and simulation results of rod-pinch diode current.

    发次/No.实验测量电流/kAA模型模拟电流/kAA模型电流百分差/%B模型模拟电流/kAB模型电流百分差/%
    1—657.0036.3036.3254.803.86
    4—5458.8047.8018.7163.898.66
    4—6273.7063.5013.8483.6013.43
    4—8198.5084.0014.72104.606.19
    下载: 导出CSV

    表 3  杆箍缩二极管1 m处剂量实验与模拟结果

    Table 3.  Experimental and simulation results of dose at 1 m of rod pinch diode.

    发次/No.实验测量剂量/RadA模型模拟剂量/RadA模型剂量百分差/%B模型模拟剂量/RadB模型剂量百分差/%
    1—61.230.8629.831.251.63
    4—543.603.366.673.764.44
    4—629.505.4143.098.738.11
    4—8116.6013.1220.9617.183.49
    下载: 导出CSV

    表 4  焦斑计算结果

    Table 4.  Focal spot calculation results.

    模型FWHM成像屏/mmFWHM光源/mm
    A模型4.66 ± 0.382.33 ± 0.20
    B模型2.40 ± 0.161.20 ± 0.08
    下载: 导出CSV
  • [1]

    刘军 2008 博士学位论文 (北京: 中国工程物理研究院)

    Liu J 2008 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [2]

    张寿云 1985 爆炸与冲击 5 89

    Zhang S Y 1985 Explos. Shock Waves 5 89

    [3]

    Duff R E, Knight H T 1956 J. Chem. Phys. 25 1301

    [4]

    耿力东, 何泱, 袁建强, 王敏华, 曹龙博, 谢卫平 2018 强激光与粒子束 30 115003Google Scholar

    Geng L D, He Y, Yuan J Q, Wang M H, Cao L B, Xie W P 2018 High Power Laser Part. Beams 30 115003Google Scholar

    [5]

    Commisso R J, Cooperstein G, Hinshelwood D D, Mosher D, Young F C 2002 IEEE Trans. Plasma Sci. 30 338Google Scholar

    [6]

    陈林, 姜巍, 谢卫平, 邓建军 2007 强激光与粒子束 19 1747

    Chen L, Jiang W, Xie W P, Deng J J 2007 High Power Laser Part. Beams 19 1747

    [7]

    高屹, 邱爱慈, 吕敏, 杨海亮, 张众, 张鹏飞 2010 核技术 33 5

    Gao Y, Qiu A C, Lü M, Yang H L, Zhang Z, Zhang P F 2010 Nucl. Tech. 33 5

    [8]

    Hinshelwood D D, Cooperstein G, Mosher D, Ottinger P F, Schumer J W, Stephanakis S J, Swanekamp S B, Weber B V, Young F C 2002 Am. Inst. Phys. Conf. Proc. 650 203

    [9]

    孙剑锋, 孙江, 邱爱慈, 张鹏飞, 杨海亮, 李静雅, 尹佳辉, 胡杨, 金亮 2014 强激光与粒子束 26 276Google Scholar

    Sun J F, Sun J, Qiu A C, Zhang P F, Yang H L, Li J Y, Yin J H, Hu Y, Jin L 2014 High Power Laser Part. Beams 26 276Google Scholar

    [10]

    孙江, 孙剑锋, 杨海亮, 张鹏飞, 苏兆锋, 周军 2013 现代应用物理 1 18Google Scholar

    Sun J, Sun J F, Yang H L, Zhang P F, Su Z F, Zhou J 2013 Mod. Appl. Phys. 1 18Google Scholar

    [11]

    Weber B V, Allen R, Comrmsso R J, Cooperstein G, Hinshelwood D D, Mosher D, Murphy D P, Ottinger PF, Phipps D G, Schumer J W 2007 IEEE 34th International Conference on Plasma Science (ICOPS) Albuquerque, NM, USA, June 17–22, 2007 p440

    [12]

    Sorokin S A 2010 Tech. Phys. Lett. 36 379Google Scholar

    [13]

    Weber B V, Cooperstein G, Hinshelwood D D, Mosher D, Schumer J W, Stephanakis S J, Strasburg S B, Swanekamp S B, Young F C 2002 AIP Conf. Proc. 650 191Google Scholar

    [14]

    徐启福 2012 博士学位论文 (长沙: 国防科学技术大学)

    Xu Q F 2012 Ph. D. Dissertation (Chang Sha: National University of Defense Science and technology) (in Chinese)

    [15]

    Poukey J W 1975 Appl. Phys. Lett. 26 145Google Scholar

    [16]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 付佳斌, 赵小明, 何泱 2018 强激光与粒子束 30 085003Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Fu J B, Zhao X M, He Y 2018 High Power Laser Part. Beams 30 085003Google Scholar

    [17]

    Miller C L, Welch D R, Rose D V, Oliver B V 2010 IEEE Trans. Plasma Sci. 38 2507Google Scholar

    [18]

    王宇, 李洪涛, 王文斗, 邓建军, 刘金峰, 马成刚 2015 强激光与粒子束 27 095005Google Scholar

    Wang Y, Li H T, Wang W D, Deng J J, Liu J F, Ma C G 2015 High Power Laser Part. Beams 27 095005Google Scholar

    [19]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 张思群, 赵小明, 何泱 2018 原子能科学技术 52 1512Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Zhang S Q, Zhao X M, He Y 2018 At. Energy Sci. Technol. 52 1512Google Scholar

    [20]

    Xie W, Xia M, Guo F, Geng L, Zhao Y, Xu L, Feng S, Zhou L, Wei B, He A, Yuan J, Chen L, Li H, Han W, Jiang J, Li F, Wang Z, Li Y, Kang J, Zhang Y, Wu W, Wang M, Zou W 2021 Phys. Rev. Accel. Beams 24 110401Google Scholar

    [21]

    Zhou J, Liu D, Chen L, Li Z 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar

    [22]

    Perl J, Shin J, Schümann J, Faddegon B, Paganetti H 2012 Med. Phys. 39 6818Google Scholar

    [23]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar

    [25]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res. , Sect. A 506 250Google Scholar

    [26]

    李成刚 2015 博士学位论文 (北京: 中国工程物理研究院)

    Li C G 2015 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

  • [1] 侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙. 平动小目标光子探测回波特性及测距误差研究. 物理学报, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [2] 胡杨, 孙江, 张金海, 蔡丹, 杨海亮, 苏兆锋, 孙铁平, 孙剑锋, 赵博文. “强光一号”加速器短γ二极管径向箍缩率计算方法. 物理学报, 2021, 70(18): 185202. doi: 10.7498/aps.70.20210472
    [3] 王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉. Mg2Si/Si雪崩光电二极管的设计与模拟. 物理学报, 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [4] 黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪. 激光二极管抽运氦气冷却钕玻璃叠片激光放大器热致波前畸变和应力双折射的数值模拟和实验研究. 物理学报, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [5] 赵屾, 朱鑫磊, 石桓通, 邹晓兵, 王新新. 用X-pinch对双丝Z箍缩进行轴向X射线背光照相. 物理学报, 2015, 64(1): 015203. doi: 10.7498/aps.64.015203
    [6] 刘海军, 田晓波, 李清江, 孙兆林, 刁节涛. 基于蒙特卡洛方法的钛氧化物忆阻器辐射损伤研究. 物理学报, 2015, 64(7): 078401. doi: 10.7498/aps.64.078401
    [7] 阮聪, 孙晓民, 宋亦旭. 元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟. 物理学报, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [8] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [9] 吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉. 强激光与锥型结构靶相互作用准直电子束粒子模拟研究. 物理学报, 2014, 63(9): 094101. doi: 10.7498/aps.63.094101
    [10] 杜海伟, 陈民, 张凯云, 盛政明, 张杰. 少周期激光脉冲与气体作用产生的离化电流和THz波辐射. 物理学报, 2012, 61(17): 174205. doi: 10.7498/aps.61.174205
    [11] 苏东, 唐昌建. 相对论电子束在动态加载等离子体中的自聚焦传输. 物理学报, 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [12] 吴洋, 许州, 周霖, 李文君, 唐传祥. W波段扩展互作用速调管放大器的模拟与设计. 物理学报, 2012, 61(22): 224101. doi: 10.7498/aps.61.224101
    [13] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [14] 张鹏飞, 苏兆锋, 孙剑锋, 杨海亮, 李永东, 高屹, 孙江, 王洪广, 尹佳辉, 梁天学, 孙凤举, 王志国. 阳极杆箍缩二极管产生X射线能谱的模拟计算. 物理学报, 2011, 60(10): 100204. doi: 10.7498/aps.60.100204
    [15] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [16] 熊玲玲, 李建龙, 吕百达. 一种模拟二极管激光源场的新方法. 物理学报, 2009, 58(2): 975-979. doi: 10.7498/aps.58.975
    [17] 徐 涵, 常文蔚, 卓红斌, 银 燕. 优化脉冲间距的多脉冲尾流加速PIC模拟. 物理学报, 2003, 52(11): 2836-2841. doi: 10.7498/aps.52.2836
    [18] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [19] 郭红霞, 陈雨生, 张义门, 吴国荣, 周辉, 关颖, 韩福斌, 龚建成. 多层平板电离室测量不同材料界面剂量分布及其蒙特-卡洛模拟. 物理学报, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
    [20] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
计量
  • 文章访问数:  3386
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-07-28
  • 上网日期:  2022-11-03
  • 刊出日期:  2022-11-20

/

返回文章
返回