搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平动小目标光子探测回波特性及测距误差研究

侯阿慧 胡以华 方佳节 赵楠翔 徐世龙

引用本文:
Citation:

平动小目标光子探测回波特性及测距误差研究

侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙

Photon echo probability distribution characteristics and range walk error of small translational target for photon ranging

Hou A-Hui, Hu Yi-Hua, Fang Jia-Jie, Zhao Nan-Xiang, Xu Shi-Long
PDF
HTML
导出引用
  • 针对远距离运动目标的光子测距问题, 建立了运动目标的光子探测回波概率分布模型, 给出了适用于任意目标的光子探测蒙特卡洛模型. 通过实验对比, 验证了蒙特卡洛仿真模型的正确性. 进一步分析了一个探测周期内的平动小矩形目标激光回波和光子回波概率分布变化规律, 讨论了光子测距误差与目标平动速度间的关系. 结果表明: 光斑直径为$ {\text{2}}{\text{.5 m}} $、目标尺度为$ {\text{1 m}} $时, 距离漂移在速度为$ 25{\text{ m/s}} $取到极大值$ 6.72{\text{ cm}} $, 是扩展目标距离漂移的$ 1/2 $倍; 随着平动速度的增加, 以出光斑为界, 距离漂移先增大后保持稳定不变. 本文提出的方法可进一步扩展到其他形状、材质、姿态、运动目标的光子探测, 研究结果为运动目标的光子测距的校正和性能的提升提供了理论依据.
    The photon counting Lidar enhances the signal-to-noise ratio of the echo signal and reduces the number of photons required for signal analysis, thereby improving the detection range and measurement accuracy. At present, the photon counting Lidar is mainly used to detect stationary targets, and the mechanism of the influence of long-distance target motion characteristics on the photon echo probability distribution is still unclear. Therefore, it is urgent to study the photon ranging performance of long-distance moving targets.In this paper, the probability distribution model of photon detection echo of moving targets is established, and a Monte Carlo model for photon detection of arbitrary targets is given. Through experimental comparison, the correctness of the Monte Carlo simulation model is verified. Furthermore, the probability distribution characteristics of the laser echo and photon echo of a small rectangular target in translation within a detection period are compared. And the variation law of the probability distribution of photon detection under different translational speeds is analyzed. In addition, the relationship between the photon ranging error and the translational speed of the target is discussed.The results show that the photon echo probability distribution of the translational target is more forward and the width is narrower than the laser pulse echo probability distribution. Compared with the extended target, the detection probability of the translational small target is significantly reduced, and the maximum average echo photon number is $ 1/10 $ times that of the extended target, as a result, the photon detection of the translational target requires higher laser pulse energy. When the length of target is 1m, the range walk error reaches a maximum value at a speed of $25\;{\text{m/s}}$, i.e. $6.72\;{\text{ cm}}$, which is $ 1/2 $ times that of the extended target. With the increase of the translational speed, the range walk error first increases and then turns stable with the light spot acting as the boundary.The method proposed in this paper can be further extended to photon detection and ranging of targets with other shapes, materials and attitudes. The research results provide a theoretical basis for the correction and performance improvement of the photon ranging of moving target. Furthermore, it lays the foundation for the detection of moving targets and accurate acquisition of information by photon counting Lidar.
      通信作者: 胡以华, skl_hyh@163.com ; 赵楠翔, southfly@163.com
    • 基金项目: 国防科技大学科研计划项目(批准号: ZK18-01-02)和国家自然科学基金(批准号: 61871389)资助的课题
      Corresponding author: Hu Yi-Hua, skl_hyh@163.com ; Zhao Nan-Xiang, southfly@163.com
    • Funds: Project supported by the Scientific Research Program of National University of Defense Technology, China (Grant No. ZK 18-01-02), and the National Natural Science Foundation of China (Grant No. 61871389).
    [1]

    刘博, 于洋, 姜朔 2019 光电工程 46 190167Google Scholar

    Liu B, Yu Y, Jiang S 2019 Opto-Electron. Eng. 46 190167Google Scholar

    [2]

    Wulder M A, White J C, Nelson R F, Næsset E, Ørka H O, Coops N C, Hilker T, Bater C W, Gobakken T 2012 Remote Sens. Environ. 121 196Google Scholar

    [3]

    Johnson S, Gatt P, Nichols T 2003 Proc. SPIE Int. Soc. Opt. Eng. 5086 359Google Scholar

    [4]

    侯利冰, 黄庚华, 况耀武, 陈凯, 舒嵘 2013 科学技术与工程 13 5186Google Scholar

    Hou L B, Huang G H, Kuang Y W, Chen K, Shu R 2013 Sci. Tech. Eng. 13 5186Google Scholar

    [5]

    罗远, 贺岩, 耿立明, 王明建, 雷琳君, 吴姚芳, 胡善江, 侯霞, 陈卫标 2016 中国激光 43 0514001Google Scholar

    Luo Y, He Y, Geng L M, Wang M J, Lei L J, Wu Y F, Hu S J, Hou X, Chen W B 2016 Chin. J. Lasers 43 0514001Google Scholar

    [6]

    邵禹, 王德江, 张迪, 陈成 2021 激光与光电子学进展 10 250Google Scholar

    Shao Y, Wang D J, Zhang D, Chen C 2021 Laser Optoelectron. Prog. 10 250Google Scholar

    [7]

    Pawlikowska A M, Halimi A, Lamb R A, Buller G S 2017 Opt. Express 25 11919Google Scholar

    [8]

    Degnan J J 2002 J. Geodyn. 34 503Google Scholar

    [9]

    Oh M S, Kong H J, Kim T H, Hong K H, Kim B W 2010 Opt. Commun. 283 304Google Scholar

    [10]

    Barton-Grimley R A, Thayer J P, Hayman M 2019 Opt. Lett. 44 1249Google Scholar

    [11]

    黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 物理学报 67 064205Google Scholar

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205Google Scholar

    [12]

    Chen Z D, Li X D, Li X H, Ye G C, Zhou Z G 2019 Opt. Commun. 434 7Google Scholar

    [13]

    寇添, 王海晏, 王芳, 陈闽, 徐强 2015 光学学报 35 0414001Google Scholar

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 0414001Google Scholar

    [14]

    寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强 2015 物理学报 64 120601Google Scholar

    Kou T, Wang H Y, Wang F, Wu X M, Wang L, Xu Q 2015 Acta Phys. Sin. 64 120601Google Scholar

    [15]

    徐孝彬, 张合, 张祥金, 陈杉杉, 张伟 2016 物理学报 65 210601Google Scholar

    Xu X B, Zhang H, Zhang X J, Chen S S, Zhang W 2016 Acta Phys. Sin. 65 210601Google Scholar

    [16]

    谢庚承, 叶一东, 李建民, 袁学文 2018 中国激光 45 0610001Google Scholar

    Xie B C, Ye Y D, Li J M, Yuan X W 2018 Chin. J. Lasers 45 0610001Google Scholar

    [17]

    Xu X B, Zhang H, Luo M Z, Tan Z Y, Zhang M, Yang H, Li Z H 2019 Infrared Phys. Technol. 96 330Google Scholar

    [18]

    侯阿慧, 胡以华, 赵楠翔, 方佳节, 张鑫源 2021 中国激光 48 0401016Google Scholar

    Hou A H, Hu Y H, Zhao N Y, Fang J J, Zhang X Y 2021 Chin. J. Lasers 48 0401016Google Scholar

    [19]

    刘芳华, 贺岩, 罗远, 贾文武, 曹丽君, 李琳琳, 李凯鹏, 陈勇强, 郭守川, 陈卫标 2021 中国激光 48 1310001Google Scholar

    Liu F H, He Y, Luo Y, Jia W W, Cao L J, Li L L, Li K P, Chen Y Q, Guo S C, Chen W B 2021 Chin. J. Lasers 48 1310001Google Scholar

    [20]

    Becker W 2005 Advanced Time-correlated Single Photon Counting Techniques (Berlin: Springer Science & Business Media) pp204–206

    [21]

    Fouche D G. 2003 Appl. Opt. 42 5388Google Scholar

  • 图 1  运动目标光子测距坐标系示意图 (a) xyz坐标系; (b) xoy

    Fig. 1.  Coordinate system of photon ranging for moving targets: (a) xyz coordinate system; (b) xoy plane.

    图 2  光子探测蒙特卡洛模型流程图

    Fig. 2.  Flow diagram of photon detection Monte Carlo model

    图 3  蒙特卡洛模型仿真结果对比

    Fig. 3.  Comparison of Monte Carlo model simulation results

    图 4  目标面积和回波光子数与目标平动距离的关系

    Fig. 4.  The relationship between the area of target, the number of echo photons and the target translation distance.

    图 5  v = 35 m/s时目标的光子探测概率分布结果

    Fig. 5.  Results of the photon detection probability distribution of the target at v = 35 m/s.

    图 6  不同平动速度的光子回波概率分布 (a) v = 5—25 m/s; (b) v = 35—65 m/s

    Fig. 6.  Probability distribution of photon echo with different translational speed: (a) v = 5–25 m/s; (b) v = 35–65 m/s.

    图 7  平均回波光子数和光子事件数与目标平动速度的关系

    Fig. 7.  The relationship between the average number of echo photons, the number of photon events and the speed of target.

    图 8  距离漂移与目标平动速度的关系

    Fig. 8.  The relationship between the range walk error and target translational speed.

  • [1]

    刘博, 于洋, 姜朔 2019 光电工程 46 190167Google Scholar

    Liu B, Yu Y, Jiang S 2019 Opto-Electron. Eng. 46 190167Google Scholar

    [2]

    Wulder M A, White J C, Nelson R F, Næsset E, Ørka H O, Coops N C, Hilker T, Bater C W, Gobakken T 2012 Remote Sens. Environ. 121 196Google Scholar

    [3]

    Johnson S, Gatt P, Nichols T 2003 Proc. SPIE Int. Soc. Opt. Eng. 5086 359Google Scholar

    [4]

    侯利冰, 黄庚华, 况耀武, 陈凯, 舒嵘 2013 科学技术与工程 13 5186Google Scholar

    Hou L B, Huang G H, Kuang Y W, Chen K, Shu R 2013 Sci. Tech. Eng. 13 5186Google Scholar

    [5]

    罗远, 贺岩, 耿立明, 王明建, 雷琳君, 吴姚芳, 胡善江, 侯霞, 陈卫标 2016 中国激光 43 0514001Google Scholar

    Luo Y, He Y, Geng L M, Wang M J, Lei L J, Wu Y F, Hu S J, Hou X, Chen W B 2016 Chin. J. Lasers 43 0514001Google Scholar

    [6]

    邵禹, 王德江, 张迪, 陈成 2021 激光与光电子学进展 10 250Google Scholar

    Shao Y, Wang D J, Zhang D, Chen C 2021 Laser Optoelectron. Prog. 10 250Google Scholar

    [7]

    Pawlikowska A M, Halimi A, Lamb R A, Buller G S 2017 Opt. Express 25 11919Google Scholar

    [8]

    Degnan J J 2002 J. Geodyn. 34 503Google Scholar

    [9]

    Oh M S, Kong H J, Kim T H, Hong K H, Kim B W 2010 Opt. Commun. 283 304Google Scholar

    [10]

    Barton-Grimley R A, Thayer J P, Hayman M 2019 Opt. Lett. 44 1249Google Scholar

    [11]

    黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 物理学报 67 064205Google Scholar

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205Google Scholar

    [12]

    Chen Z D, Li X D, Li X H, Ye G C, Zhou Z G 2019 Opt. Commun. 434 7Google Scholar

    [13]

    寇添, 王海晏, 王芳, 陈闽, 徐强 2015 光学学报 35 0414001Google Scholar

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 0414001Google Scholar

    [14]

    寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强 2015 物理学报 64 120601Google Scholar

    Kou T, Wang H Y, Wang F, Wu X M, Wang L, Xu Q 2015 Acta Phys. Sin. 64 120601Google Scholar

    [15]

    徐孝彬, 张合, 张祥金, 陈杉杉, 张伟 2016 物理学报 65 210601Google Scholar

    Xu X B, Zhang H, Zhang X J, Chen S S, Zhang W 2016 Acta Phys. Sin. 65 210601Google Scholar

    [16]

    谢庚承, 叶一东, 李建民, 袁学文 2018 中国激光 45 0610001Google Scholar

    Xie B C, Ye Y D, Li J M, Yuan X W 2018 Chin. J. Lasers 45 0610001Google Scholar

    [17]

    Xu X B, Zhang H, Luo M Z, Tan Z Y, Zhang M, Yang H, Li Z H 2019 Infrared Phys. Technol. 96 330Google Scholar

    [18]

    侯阿慧, 胡以华, 赵楠翔, 方佳节, 张鑫源 2021 中国激光 48 0401016Google Scholar

    Hou A H, Hu Y H, Zhao N Y, Fang J J, Zhang X Y 2021 Chin. J. Lasers 48 0401016Google Scholar

    [19]

    刘芳华, 贺岩, 罗远, 贾文武, 曹丽君, 李琳琳, 李凯鹏, 陈勇强, 郭守川, 陈卫标 2021 中国激光 48 1310001Google Scholar

    Liu F H, He Y, Luo Y, Jia W W, Cao L J, Li L L, Li K P, Chen Y Q, Guo S C, Chen W B 2021 Chin. J. Lasers 48 1310001Google Scholar

    [20]

    Becker W 2005 Advanced Time-correlated Single Photon Counting Techniques (Berlin: Springer Science & Business Media) pp204–206

    [21]

    Fouche D G. 2003 Appl. Opt. 42 5388Google Scholar

  • [1] 屈俊夫, 冯元伟, 耿力东, 李洪涛. 杆箍缩二极管阳极杆粒子生成模型研究. 物理学报, 2022, 71(22): 225203. doi: 10.7498/aps.71.20221136
    [2] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [3] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验. 物理学报, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [4] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [5] 贾辉, 罗秀娟, 张羽, 兰富洋, 刘辉, 陈明徕. 透过散射介质对直线运动目标的全光成像及追踪技术. 物理学报, 2018, 67(22): 224202. doi: 10.7498/aps.67.20180955
    [6] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像. 物理学报, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [7] 徐孝彬, 张合, 张祥金, 陈杉杉, 张伟. 脉冲激光探测平面目标特性对测距分布的影响. 物理学报, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [8] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [9] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究. 物理学报, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [10] 刘海军, 田晓波, 李清江, 孙兆林, 刁节涛. 基于蒙特卡洛方法的钛氧化物忆阻器辐射损伤研究. 物理学报, 2015, 64(7): 078401. doi: 10.7498/aps.64.078401
    [11] 阮聪, 孙晓民, 宋亦旭. 元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟. 物理学报, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [12] 阳志强, 吴振森, 张耿, 巩蕾. 旋转粗糙目标微运动特征识别技术. 物理学报, 2014, 63(21): 210301. doi: 10.7498/aps.63.210301
    [13] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [14] 王瑞燕, 袁萍, 岑建勇, 王雪娟, 王杰. 闪电通道温度诊断中观测距离的影响. 物理学报, 2014, 63(9): 099203. doi: 10.7498/aps.63.099203
    [15] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [16] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计. 物理学报, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [17] 于文英, 安里千. 锥柱复合目标激光距离多普勒像分析模型. 物理学报, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [18] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [19] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究. 物理学报, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [20] 郭红霞, 陈雨生, 张义门, 吴国荣, 周辉, 关颖, 韩福斌, 龚建成. 多层平板电离室测量不同材料界面剂量分布及其蒙特-卡洛模拟. 物理学报, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
计量
  • 文章访问数:  4247
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 修回日期:  2021-11-25
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回