-
中高层大气风场是表征中高层大气环境的重要参量, 对中高层大气风场的探测在民用和军用领域有着重要意义. 激光外差光谱技术是近年来迅速发展的一种高光谱分辨率和灵敏度的被动式遥感探测技术, 以激光外差光谱技术为核心研制的激光外差光谱仪因具有体积小、重量轻、结构稳定等特点, 在星载测量中高层风场领域有巨大的潜力和应用前景. 激光外差光谱仪的地面风场探测性能验证是其应用到卫星上的关键环节, 本文利用实验室环境下建立的风场模拟装置实现0—25 m/s的风速变化, 并基于光谱分辨率为0.003 cm–1激光外差光谱仪分别测量了无风速变化和不同风速下的CH4吸收谱, 测量风速的分辨率为3 m/s. 使用光纤F-P干涉仪、波长计和参考池对激光器输出光频率进行实时的相对定标和绝对定标. 通过计算吸收光谱中心频率的偏移量, 反演得到风场风速, 并与风场模拟器风速对比, 相对误差为1.49 m/s. 该实验对激光外差光谱仪测风性能进行有效验证, 证明了使用激光外差光谱仪进行中高层大气风场测量的可能性.The middle- and upper- atmosphere wind field are important parameters that characterize the middle- and upper-atmosphere environment, respectively. The detection of the middle- and the upper-atmosphere wind field are of great significance in the civil field and military field. Laser heterodyne spectroscopy technology is a passive remote sensing detection technology with high spectral resolution and sensitivity, and has developed rapidly in recent years. The laser heterodyne spectrometer that takes laser heterodyne spectroscopy technology as its core, is developed due to its small size, light weight and stable structure. The verification of the ground-based wind field detection performance of the laser heterodyne spectrometer is a key part of its application to satellites. In this paper, a wind speed simulation device is built in a laboratory environment to achieve a wind speed change from 0 m/s to 25 m/s in a wind field. A laser heterodyne spectrometer with a spectral resolution of 0.003 cm–1 is used to measure the CH4 absorption spectrum without and with a wind field for different wind speeds, the resolution of measuring wind speed is 3 m/s. For relative and absolute calibration of the distributed feedback laser (DL) frequency, an interference fiber with a free dispersion range D* = 0.01167 cm–1, a wavemeter and a reference cell is used. The experimental results effectively verify the wind measurement performance of the laser heterodyne spectrometer and prove the possibility of using the laser heterodyne spectrometer to measure the atmospheric wind field.
-
Keywords:
- laser heterodyne /
- high-resolution spectroscopy /
- simulation experiment /
- wind speed measurement
[1] 张霖, 张淳民, 简小华 2010 物理学报 59 899Google Scholar
Zhang L, Zhang C M, Jian X H 2010 Acta Phys. Sin. 59 899Google Scholar
[2] 王后茂, 王咏梅, 付建国, 张仲谋 2016 空间科学学报 36 352Google Scholar
Wang H M, Wang Y M, Fu J G, Zhang Z M 2016 Chin. J. Space Sci. 36 352Google Scholar
[3] 张淳民, 朱化春, 王鼎益, 赵葆常, 代海山, 张霖 2011 光学学报 31 900136Google Scholar
Zhang C M, Zhu H C, Wang D Y, Zhao B C, Dai H S, Zhang L 2011 Acta Opt. Sin. 31 900136Google Scholar
[4] Shepherd G G, Thuillier G, Cho Y M, Duboin M L, Evans W F J, Gault W A, Hersom C, Kendall D J W, Lathuillère C, Lowe R P, McDade I C, Rochon Y J, Shepherd M G, Solheim B H, Wang D Y, Ward W E 2012 Rev. Geophys. 50 RG2012Google Scholar
[5] Shepherd G G, Thuillier G, Gault W A, Solheim B H, Hersom C, Alunni J M, Brun J F, Brune S, Charlot P, Cogger L L, Desaulniers D L, Evans W F, Gattinger R L, Girod F, Harvie D, Hum R H, Kendall D W, Llewellyn E J, Lowe R P, Ohrt J, Pasternak F, Peillet O, Powell T M, Rochon Y, Ward W E, Wiens R H, Wimperi S 1993 J. Geophys. Res. 98 10725Google Scholar
[6] Hays P B, Abreu V J, Dobbs M E, Gell D A, Grassl H J, Skinner W R 1993 J. Geophys. Res. 98 10713Google Scholar
[7] 姜通, 施海亮, 沈静, 代海山, 熊伟 2018 光子学报 47 7Google Scholar
Jiang T, Shi H L, Shen J, Dai H S, Xiong W 2018 Acta Photonica Sin. 47 7Google Scholar
[8] Shepherd G G, Cho Y M 2017 Geophys. Res. Lett. 44 7036Google Scholar
[9] 汪丽, 赵葆常, 张淳民 2008 光学精密工程 16 426Google Scholar
Wang L, Zhao B C, Zhang C M 2008 Optics and Precision Engineering 16 426Google Scholar
[10] Weidmann D, Perrett B J, Macleod N A, Jenkins R M 2011 Opt. Express. 19 9074Google Scholar
[11] Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar
[12] Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar
[13] Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J P, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar
[14] Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, S ouders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 APPL PHYS B-LASERS O 125 211Google Scholar
[15] Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X M 2019 Opt. Express 27 9610Google Scholar
[16] Wilson E L, McLinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar
[17] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 物理学报 69 144201Google Scholar
Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar
[18] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 物理学报 68 064208Google Scholar
Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar
[19] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 物理学报 70 217801Google Scholar
Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar
[20] Goldstein J J, Mumma M J, Kostiuk T, Deming D, Espenak F, Zipoy D 1991 Icarus 94 45Google Scholar
[21] Sorniga M, Livengood T, Sonnabend G, Kroetz P, Stupar D, Kostiuk T, Schieder R 2008 Planet. Space Sci. 56 1399Google Scholar
[22] 高红 2008 博士学位论文(北京: 中国科学院大学)
Gao H 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[23] 叶剑勇, 张淳民, 赵葆常, 李英才 2008 物理学报 57 67Google Scholar
Ye J Y, Zhang C M, Zhao B C, Li Y C 2008 Acta Phys. Sin. 57 67Google Scholar
[24] Klimchuk A Y, Nadezhdinskii A I, Ponurovskii Y Y, Shapovalov Y P, Rodin A V 2012 Quantum Electron. 42 244Google Scholar
[25] Zenevich S G, Klimchuk A Y, Semenov V M, Spiridonov M V, Rodin A V 2019 Quantum Electron. 49 604Google Scholar
[26] Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar
[27] 王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)
Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
-
图 2 实验装置示意图与实物图. SC-5, 超连续谱光源; PD, 光电探测器; FC, 光纤耦合器; IC, 输入准直器; OC, 输出准直器; Bias-T, T型偏置器; OA, 前置放大器; BF-Filter, 带通滤波器; LIA, 锁相放大器; DL, 分布反馈式激光器; Chopper, 斩波器; Schottky Diode, 肖特基二极管
Fig. 2. Schematic diagram and physical diagram of the experimental device. SC-5, supercontinuum light source; PD, photodetector; FC, fiber coupler, IC, input collimator; OC, output collimator; Bias-T, T-type bias; OA, preamplifier; BF-Filter, band-pass filter; LIA, lock-in amplifier; DL, distributed feedback laser.
图 4 输出光波长标定 (a)经过参考池后PD2探测得到的直接吸收信号(红色实线), 经过干涉光纤后的信号(蓝色实线); (b)波长计实时定标
Fig. 4. Laser wavelength calibration: (a) Absorption signal (red dotted line) detected by PD2 after passing through the reference cell, and the signal after passing through the interference fiber (black solid line); (b) real-time calibration of the wavemeter.
-
[1] 张霖, 张淳民, 简小华 2010 物理学报 59 899Google Scholar
Zhang L, Zhang C M, Jian X H 2010 Acta Phys. Sin. 59 899Google Scholar
[2] 王后茂, 王咏梅, 付建国, 张仲谋 2016 空间科学学报 36 352Google Scholar
Wang H M, Wang Y M, Fu J G, Zhang Z M 2016 Chin. J. Space Sci. 36 352Google Scholar
[3] 张淳民, 朱化春, 王鼎益, 赵葆常, 代海山, 张霖 2011 光学学报 31 900136Google Scholar
Zhang C M, Zhu H C, Wang D Y, Zhao B C, Dai H S, Zhang L 2011 Acta Opt. Sin. 31 900136Google Scholar
[4] Shepherd G G, Thuillier G, Cho Y M, Duboin M L, Evans W F J, Gault W A, Hersom C, Kendall D J W, Lathuillère C, Lowe R P, McDade I C, Rochon Y J, Shepherd M G, Solheim B H, Wang D Y, Ward W E 2012 Rev. Geophys. 50 RG2012Google Scholar
[5] Shepherd G G, Thuillier G, Gault W A, Solheim B H, Hersom C, Alunni J M, Brun J F, Brune S, Charlot P, Cogger L L, Desaulniers D L, Evans W F, Gattinger R L, Girod F, Harvie D, Hum R H, Kendall D W, Llewellyn E J, Lowe R P, Ohrt J, Pasternak F, Peillet O, Powell T M, Rochon Y, Ward W E, Wiens R H, Wimperi S 1993 J. Geophys. Res. 98 10725Google Scholar
[6] Hays P B, Abreu V J, Dobbs M E, Gell D A, Grassl H J, Skinner W R 1993 J. Geophys. Res. 98 10713Google Scholar
[7] 姜通, 施海亮, 沈静, 代海山, 熊伟 2018 光子学报 47 7Google Scholar
Jiang T, Shi H L, Shen J, Dai H S, Xiong W 2018 Acta Photonica Sin. 47 7Google Scholar
[8] Shepherd G G, Cho Y M 2017 Geophys. Res. Lett. 44 7036Google Scholar
[9] 汪丽, 赵葆常, 张淳民 2008 光学精密工程 16 426Google Scholar
Wang L, Zhao B C, Zhang C M 2008 Optics and Precision Engineering 16 426Google Scholar
[10] Weidmann D, Perrett B J, Macleod N A, Jenkins R M 2011 Opt. Express. 19 9074Google Scholar
[11] Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar
[12] Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar
[13] Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J P, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar
[14] Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, S ouders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 APPL PHYS B-LASERS O 125 211Google Scholar
[15] Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X M 2019 Opt. Express 27 9610Google Scholar
[16] Wilson E L, McLinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar
[17] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 物理学报 69 144201Google Scholar
Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar
[18] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 物理学报 68 064208Google Scholar
Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar
[19] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 物理学报 70 217801Google Scholar
Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar
[20] Goldstein J J, Mumma M J, Kostiuk T, Deming D, Espenak F, Zipoy D 1991 Icarus 94 45Google Scholar
[21] Sorniga M, Livengood T, Sonnabend G, Kroetz P, Stupar D, Kostiuk T, Schieder R 2008 Planet. Space Sci. 56 1399Google Scholar
[22] 高红 2008 博士学位论文(北京: 中国科学院大学)
Gao H 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[23] 叶剑勇, 张淳民, 赵葆常, 李英才 2008 物理学报 57 67Google Scholar
Ye J Y, Zhang C M, Zhao B C, Li Y C 2008 Acta Phys. Sin. 57 67Google Scholar
[24] Klimchuk A Y, Nadezhdinskii A I, Ponurovskii Y Y, Shapovalov Y P, Rodin A V 2012 Quantum Electron. 42 244Google Scholar
[25] Zenevich S G, Klimchuk A Y, Semenov V M, Spiridonov M V, Rodin A V 2019 Quantum Electron. 49 604Google Scholar
[26] Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar
[27] 王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)
Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
计量
- 文章访问数: 4383
- PDF下载量: 74
- 被引次数: 0