搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气激光: 面向大气遥感的高分辨光谱技术

张海粟 乔玲玲 程亚

引用本文:
Citation:

空气激光: 面向大气遥感的高分辨光谱技术

张海粟, 乔玲玲, 程亚

Air-lasing high-resolution spectroscopy for atmospheric remote sensing

Zhang Hai-Su, Qiao Ling-Ling, Cheng Ya
PDF
HTML
导出引用
  • 空气激光是以空气为增益介质产生的无谐振腔自由空间相干辐射, 具有高准直度、高相干性以及高强度等显著优势. 基于高功率超短激光脉冲非线性传输成丝过程, 可以远程诱导产生空气激光从而为大气遥感探测提供理想光源. 得益于空气激光产生时伴随的原子分子相干激发过程, 空气激光远程探测技术具有高光谱分辨率和高探测灵敏度, 为痕量分子探测、温室气体监测以及工业污染物检测等远程遥感应用提供了有力工具. 本文简单介绍空气激光的物理机制, 着重回顾空气激光远程探测的各种应用并对未来研究做出展望.
    Air-lasing is a cavityless coherent radiation generated in free space from air constituents as gain medium, featuring high collimation, high coherence, and high intensity. Benefited from the long-range filamentation of high-power ultrashort laser pulses propagating in air, the air-lasing can be induced remotely, providing an ideal light source for atmospheric remote sensing and chemical species-resolved detection. Owing to the coherent atomic/molecular excitation process accompanied with the generation of air laser, remote sensing based on air-lasing has high spectral resolution and high detection sensitivity, which recently proved to be a powerful tool for important applications such as in trace molecule detection, greenhouse gas monitoring and industrial pollutant detection. In this short review, the physical mechanism of air lasing is briefly introduced, and various applications of air laser remote sensing are reviewed emphatically, and the future research is prospected.
      通信作者: 程亚, ya.cheng@siom.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0705000)和国家自然科学基金(批准号: 12192251, 12134001) 资助的课题
      Corresponding author: Cheng Ya, ya.cheng@siom.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0705000) and the National Natural Science Foundation of China (Grant Nos. 12192251, 12134001).
    [1]

    姚金平, 程亚 2020 中国激光 47 0500005Google Scholar

    Yao J, Cheng Y 2020 Chin. J. Laser 47 0500005Google Scholar

    [2]

    Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [3]

    Polynkin P, Cheng Y 2018 Air Lasing (Cham: Springer International Publishing) p139

    [4]

    Luo Q, Liu W W, Chin S L 2003 Appl. Phys. B 76 337Google Scholar

    [5]

    Dogariu A, Michael J B, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [6]

    Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802Google Scholar

    [7]

    Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011 P. Natl. Acad. Sci. USA 108 3130Google Scholar

    [8]

    Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 P. Natl. Acad. Sci. USA 109 15185Google Scholar

    [9]

    Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012 Opt. Express 20 18784Google Scholar

    [10]

    Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015 Opt. Lett. 40 2469Google Scholar

    [11]

    Yuan L Q, Liu Y, Yao J P, Cheng Y 2019 Adv. Quantum Tech. 2 1900080Google Scholar

    [12]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [13]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [14]

    Fu Y, Cao J C, Yamanouchi K, Xu H L 2022 Ultrafast Sci. 4 9867028Google Scholar

    [15]

    Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022 Opt. Lett. 47 481Google Scholar

    [16]

    Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Lett. 39 2250Google Scholar

    [17]

    Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020 Phys. Rev. A 101 043404Google Scholar

    [18]

    Zhao X D, Nolte S, Ackermann R 2020 Opt. Lett. 45 3661Google Scholar

    [19]

    Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Sci. 2 9761458Google Scholar

    [20]

    Laurain A, Scheller M, Polynkin P 2014 Phys. Rev. Lett. 113 253901Google Scholar

    [21]

    Dogariu A, Miles R B 2016 Opt. Express 24 A544Google Scholar

    [22]

    Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012 Phys. Rev. A 86 033831Google Scholar

    [23]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750Google Scholar

    [24]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [25]

    Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013 New J. Phys. 15 023046Google Scholar

    [26]

    Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [28]

    Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [29]

    Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017 Phys. Rev. Lett. 119 203205Google Scholar

    [30]

    Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018 Phys. Rev. Lett. 120 083205Google Scholar

    [31]

    Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018 Phys. Rev. Lett. 120 133208Google Scholar

    [32]

    Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018 Appl. Phys. B 124 73

    [33]

    Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [34]

    Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019 Phys. Rev. Lett. 122 013202Google Scholar

    [35]

    Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020 Phys. Rev. Lett. 125 053201Google Scholar

    [36]

    Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013 Phys. Rev. X 3 041009Google Scholar

    [37]

    Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Express 22 3151Google Scholar

    [38]

    Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015 J. Phys. B 48 094001Google Scholar

    [39]

    Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014 Phys. Rev. A 89 033833Google Scholar

    [40]

    Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019 Phys. Rev. A 100 031402Google Scholar

    [41]

    Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014 Phys. Rev. A 90 042504Google Scholar

    [42]

    Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014 Phys. Rev. A 89 042508Google Scholar

  • 图 1  $ {\rm{N}}_{2}^{+} $激光的时空特性[17] (a)中心波长为428 nm的$ {\rm{N}}_{2}^{+} $激光光谱, 插图为$ {\rm{N}}_{2}^{+} $激光的远场光斑形状; (b)$ {\rm{N}}_{2}^{+} $激光的时域波形, 红色箭头标明800 nm驱动激光脉冲入射时刻

    Fig. 1.  Spectral-temporal profiles of $ {\rm{N}}_{2}^{+} $ lasing[17]: (a) $ {\rm{N}}_{2}^{+} $ laser spectrum with the central wavelength of 428 nm, the inset is the far-field profile of $ {\rm{N}}_{2}^{+} $ laser; (b) $ {\rm{N}}_{2}^{+} $ laser temporal profile with the red arrow denoting the timing of the 800 nm driving pulse.

    图 2  $ {\rm{N}}_{2}^{+} $激光和$ {\rm{N}}_{2} $拉曼散射光谱[16] (a) $ {\rm{N}}_{2}^{+} $激光光谱; (b) $ {\rm{N}}_{2} $拉曼散射光谱

    Fig. 2.  Spectra of $ {\rm{N}}_{2}^{+} $ laser and $ {\rm{N}}_{2} $ Raman scattering[16]: (a) $ {\rm{N}}_{2}^{+} $ laser spectrum; (b) $ {\rm{N}}_{2} $ Raman scattering spectrum.

    图 3  利用$ {\rm{N}}_{2}^{+} $激光产生高阶拉曼散射[17] (a)实验装置示意图; (b) $ {\rm{N}}_{2}^{+} $激光在不同气压的CO2气体中产生的高阶转动拉曼散射光谱, 插图为1 atm (1 atm = 1.013×105 Pa)下的拉曼散射信号空间光斑形状

    Fig. 3.  High-order cascaded Raman scattering induced by $ {\rm{N}}_{2}^{+} $ laser[17]: (a) Experimental schematic; (b) measured high-order rotational Raman scattering spectra at various gas pressures of CO2, inset shows the spatial profile of Raman signals at 1 atm (1 atm = 1.013×105 Pa).

    图 4  $ {\rm{N}}_{2}^{+} $激光在CO2中产生拉曼散射[18] (a) CO2中对应的拉曼跃迁能级图; (b) N2, $ {\rm{N}}_{2}^{+} $, O2和 CO2的拉曼散射光谱

    Fig. 4.  Raman scattering induced by $ {\rm{N}}_{2}^{+} $ laser: (a) Relevant Raman transition levels in CO2; (b) Raman scattering spectra of N2, $ {\rm{N}}_{2}^{+} $, O2 and CO2.

    图 5  空气激光辅助相干拉曼散射[19] (a) 空气激光和相干拉曼散射产生机制示意图; (b), (c) 相干拉曼信号强度与气体浓度的定量关系, 插图为最小浓度下测得CO2和SF6的拉曼信号

    Fig. 5.  Air-lasing based coherent Raman scattering[19]: (a) Generation scheme of air-lasing and coherent Raman scattering; (b), (c) intensity of Raman signal as a function of gas pressure, inset shows the measured Raman signals of CO2 and SF6 at the minimum pressures.

  • [1]

    姚金平, 程亚 2020 中国激光 47 0500005Google Scholar

    Yao J, Cheng Y 2020 Chin. J. Laser 47 0500005Google Scholar

    [2]

    Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [3]

    Polynkin P, Cheng Y 2018 Air Lasing (Cham: Springer International Publishing) p139

    [4]

    Luo Q, Liu W W, Chin S L 2003 Appl. Phys. B 76 337Google Scholar

    [5]

    Dogariu A, Michael J B, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [6]

    Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802Google Scholar

    [7]

    Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011 P. Natl. Acad. Sci. USA 108 3130Google Scholar

    [8]

    Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 P. Natl. Acad. Sci. USA 109 15185Google Scholar

    [9]

    Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012 Opt. Express 20 18784Google Scholar

    [10]

    Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015 Opt. Lett. 40 2469Google Scholar

    [11]

    Yuan L Q, Liu Y, Yao J P, Cheng Y 2019 Adv. Quantum Tech. 2 1900080Google Scholar

    [12]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [13]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [14]

    Fu Y, Cao J C, Yamanouchi K, Xu H L 2022 Ultrafast Sci. 4 9867028Google Scholar

    [15]

    Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022 Opt. Lett. 47 481Google Scholar

    [16]

    Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Lett. 39 2250Google Scholar

    [17]

    Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020 Phys. Rev. A 101 043404Google Scholar

    [18]

    Zhao X D, Nolte S, Ackermann R 2020 Opt. Lett. 45 3661Google Scholar

    [19]

    Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Sci. 2 9761458Google Scholar

    [20]

    Laurain A, Scheller M, Polynkin P 2014 Phys. Rev. Lett. 113 253901Google Scholar

    [21]

    Dogariu A, Miles R B 2016 Opt. Express 24 A544Google Scholar

    [22]

    Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012 Phys. Rev. A 86 033831Google Scholar

    [23]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750Google Scholar

    [24]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [25]

    Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013 New J. Phys. 15 023046Google Scholar

    [26]

    Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [28]

    Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [29]

    Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017 Phys. Rev. Lett. 119 203205Google Scholar

    [30]

    Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018 Phys. Rev. Lett. 120 083205Google Scholar

    [31]

    Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018 Phys. Rev. Lett. 120 133208Google Scholar

    [32]

    Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018 Appl. Phys. B 124 73

    [33]

    Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [34]

    Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019 Phys. Rev. Lett. 122 013202Google Scholar

    [35]

    Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020 Phys. Rev. Lett. 125 053201Google Scholar

    [36]

    Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013 Phys. Rev. X 3 041009Google Scholar

    [37]

    Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Express 22 3151Google Scholar

    [38]

    Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015 J. Phys. B 48 094001Google Scholar

    [39]

    Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014 Phys. Rev. A 89 033833Google Scholar

    [40]

    Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019 Phys. Rev. A 100 031402Google Scholar

    [41]

    Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014 Phys. Rev. A 90 042504Google Scholar

    [42]

    Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014 Phys. Rev. A 89 042508Google Scholar

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究. 物理学报, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [3] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [4] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [5] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] 王昕, 康哲铭, 刘龙, 范贤光. 基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 物理学报, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [7] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [8] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [9] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [10] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [11] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [12] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [13] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [15] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  2484
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-11-14
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回