搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体高次谐波产生、调控及应用

汪洋 刘煜 吴成印

引用本文:
Citation:

固体高次谐波产生、调控及应用

汪洋, 刘煜, 吴成印

Generation, manipulation, and application of high-order harmonics in solids

Wang Yang, Liu Yu, Wu Cheng-Yin
PDF
HTML
导出引用
  • 基于超快强激光与物质相互作用的高次谐波产生(high-order harmonic generation, HHG)提供了非微扰区光与物质相互作用的研究平台, 同时也是台式化极紫外光源和阿秒脉冲的主要产生途径. 非微扰区固体HHG涉及超快强场物理、凝聚态物理、材料科学和信息科学等领域的核心内容, 自2011年首次在实验中观察到以来, 迅速成为强场物理和阿秒科学的研究前沿. 本综述从一个实验工作者的角度, 总结了固体HHG的研究进展和重要应用. 首先通过对比高次谐波(high-order harmonic, HH)产率和截止能量对驱动激光参数的依赖关系, 展示固体HHG与气体HHG截然不同的特性. 重点介绍固体HHG调控和应用方面的进展, 包括通过设计靶材结构或者激光光场实现对HH产率、偏振、时空分布等精密调控, 以及固体HH谱学技术在材料结构表征和超快电子动力学研究等领域的应用. 最后对固体HHG的未来发展进行了展望.
    The generation of high-order harmonics based on the interaction between ultrafast intense laser and matter provides a platform for studying the light-matter interaction in the non-perturbative region. It is also the main route to generating desktop extreme ultraviolet light source and attosecond pulse. The non-perturbative solid high-order harmonic involves the core content of ultrafast strong field physics, condensed matter physics, materials science, information science and other fields. Since it was first experimentally observed in 2011, it has rapidly become the research frontier of strong field physics and attosecond science. This review summarizes the research progress and important applications of solid high-order harmonics from the perspective of an experimentalist. Firstly, distinct characteristics are shown for solid high-order harmonic by comparing the dependence of harmonic yield and cut-off energy on driving laser parameters with gas high-order harmonic. Then, the progress of manipulation and application are highlighted for solid high-order harmonic, including the precise control of harmonic yield, polarization, space-time distribution through the design of target structure or laser field, as well as the application of solid high-order harmonic spectroscopy in the fields of material structure characterization and ultrafast electron dynamics. Finally, the future is prospected for the study of solid high-order harmonics.
      通信作者: 吴成印, cywu@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0306302)和国家自然科学基金(批准号: 12174011, 11625414)资助的课题.
      Corresponding author: Wu Cheng-Yin, cywu@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306302) and the National Natural Science Foundation of China (Grant Nos. 12174011, 11625414).
    [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [2]

    Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At., Mol. Opt. Phys. 21 L31Google Scholar

    [3]

    Corkum P á, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [4]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [5]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [6]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F 2010 Nature 466 739Google Scholar

    [7]

    Gy, Farkas, Cs, Tóth, S, D, Moustaizis, N, A, Papadogiannis 1992 Phys. Rev. A 46 R3605Google Scholar

    [8]

    Ghimire S, Dichiara A D, Sistrunk E, Agostini P, Dimauro L F, Reis D A 2010 Nat. Phys. 7 138

    [9]

    You Y S, Reis D A, Ghimire S 2017 Nat. Phys. 13 345Google Scholar

    [10]

    You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam Mirzaei S, Chini M, Chang Z, Ghimire S 2017 Nat. Commun. 8 1Google Scholar

    [11]

    Han S, Kim H, Kim Y W, Kim Y J, Kim S, Park I Y, Kim S W 2016 Nat. Commun. 7 1

    [12]

    Liu H, Guo C, Vampa G, Zhang J L, Sarmiento T, Xiao M, Bucksbaum P H, Vučković J, Fan S, Reis D A 2018 Nat. Phys. 14 1006Google Scholar

    [13]

    Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov A Y, Villeneuve D M, Ropers C, Corkum P B 2017 Science 357 303Google Scholar

    [14]

    Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2017 Nat. Phys. 13 262Google Scholar

    [15]

    Yoshikawa N, Nagai K, Uchida K, Takaguchi Y, Sasaki S, Miyata Y, Tanaka K 2019 Nat. Commun. 10 3709

    [16]

    Kobayashi Y, Heide C, Kelardeh H K, Johnson A, Liu F, Heinz T F, Reis D A, Ghimire S 2021 Ultrafast Science 2021Google Scholar

    [17]

    Bai Y, Fei F, Wang S, Li N, Li X, Song F, Li R, Xu Z, Liu P 2021 Nat. Phys. 17 311Google Scholar

    [18]

    Schmid C P, Weigl L, Grössing P, Junk V, Gorini C, Schlauderer S, Ito S, Meierhofer M, Hofmann N, Afanasiev D 2021 Nature 593 385Google Scholar

    [19]

    Yoshikawa N, Tamaya T, Tanaka K 2017 Science 356 736Google Scholar

    [20]

    Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J 2018 Nature 561 507Google Scholar

    [21]

    Cheng B, Kanda N, Ikeda T N, Matsuda T, Xia P, Schumann T, Stemmer S, Itatani J, Armitage N P, Matsunaga R 2020 Phys. Rev. Lett. 124 117402Google Scholar

    [22]

    Lv Y Y, Xu J, Han S, Zhang C, Han Y, Zhou J, Yao S H, Liu X P, Lu M H, Weng H 2021 Nat. Commun. 12 6437

    [23]

    Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, Brabec T 2014 Phys. Rev. Lett. 113 073901Google Scholar

    [24]

    Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302Google Scholar

    [25]

    Ghimire S, DiChiara A D, Sistrunk E, Ndabashimiye G, Szafruga U B, Mohammad A, Agostini P, DiMauro L F, Reis D A 2012 Phys. Rev. A 85 043836Google Scholar

    [26]

    Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata Gonokami M, Ishikawa K L 2017 Phys. Rev. A 95 043416Google Scholar

    [27]

    You Y S, Cunningham E, Reis D A, Ghimire S 2018 J. Phys. B: At. Mol. Opt. Phys. 51 114002Google Scholar

    [28]

    Osika E N, Chacón A, Ortmann L, Suárez N, Pérez Hernández J A, Szafran B, Ciappina M F, Sols F, Landsman A S, Lewenstein M 2017 Phys. Rev. X 7 021017

    [29]

    Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M, Lu P 2019 Phys. Rev. Lett. 122 193901Google Scholar

    [30]

    Zhang X, Li J, Zhou Z, Yue S, Du H, Fu L, Luo H G 2019 Phys. Rev. B 99 014304Google Scholar

    [31]

    Yue L, Gaarde M B 2020 Phys. Rev. Lett. 124 153204Google Scholar

    [32]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520Google Scholar

    [33]

    Lakhotia H, Kim H Y, Zhan M, Hu S, Meng S, Goulielmakis E 2020 Nature 583 55Google Scholar

    [34]

    Catoire F, Bachau H, Wang Z, Blaga C, Agostini P, DiMauro L F 2018 Phys. Rev. Lett. 121 143902Google Scholar

    [35]

    Li L, Lan P, Zhu X, Lu P 2021 Phys. Rev. Lett. 127 223201Google Scholar

    [36]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982

    [37]

    Goulielmakis E, Brabec T 2022 Nat. Photon. 16 411Google Scholar

    [38]

    Park J, Subramani A, Kim S, Ciappina M F 2022 Adv. Phys. X 7 2003244

    [39]

    Kruchinin S Y, Krausz F, Yakovlev V S 2018 Rev. Mod. Phys. 90 021002Google Scholar

    [40]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A 2012 Science 336 1287Google Scholar

    [41]

    Ye P, He X, Teng H, Zhan M, Zhong S, Zhang W, Wang L, Wei Z 2014 Phys. Rev. Lett. 113 073601Google Scholar

    [42]

    Gallais L, Douti D B, Commandre M, Batavičiūtė G, Pupka E, Ščiuka M, Smalakys L, Sirutkaitis V, Melninkaitis A 2015 J. Appl. Phys. 117 223103Google Scholar

    [43]

    Lewenstein M, Balcou P, Ivanov M Y, L’huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [44]

    You Y S, Wu M, Yin Y, Chew A, Ren X, Gholam Mirzaei S, Browne D A, Chini M, Chang Z, Schafer K J 2017 Opt. Lett. 42 1816Google Scholar

    [45]

    Langer F, Hohenleutner M, Huttner U, Koch S W, Kira M, Huber R 2017 Nat. Photon. 11 227Google Scholar

    [46]

    Korobenko A, Saha S, Godfrey A T K, Gertsvolf M, Naumov A Y, Villeneuve D M, Boltasseva A, Shalaev V M, Corkum P B 2021 Nat. Commun. 12 4981Google Scholar

    [47]

    Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V, Tsai J S 2003 Nature 421 823Google Scholar

    [48]

    Baykusheva D, Chacón A, Lu J, Bailey T P, Sobota J A, Soifer H, Kirchmann P S, Rotundu C, Uher C, Heinz T F 2021 Nano Lett. 21 8970Google Scholar

    [49]

    Lou Z, Zheng Y, Liu C, Zhang L, Ge X, Li Y, Wang J, Zeng Z, Li R, Xu Z 2020 Opt. Commun. 469 125769Google Scholar

    [50]

    You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam Mirzaei S, Chini M, Chang Z, Ghimire S 2017 Nat. Commun. 8 724Google Scholar

    [51]

    Jürgens P, Liewehr B, Kruse B, Peltz C, Engel D, Husakou A, Witting T, Ivanov M, Vrakking M J J, Fennel T 2020 Nat. Phys. 16 1035Google Scholar

    [52]

    DiChiara A D, Sistrunk E, Miller T A, Agostini P, DiMauro L F 2009 Opt. Express 17 20959Google Scholar

    [53]

    Flettner A, Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G 2003 Appl. Phys. B 77 747

    [54]

    Svoboda V, Yin Z, Luu T T, Wörner H J 2021 Opt. Express 29 30799Google Scholar

    [55]

    Luu T T, Yin Z, Jain A, Gaumnitz T, Pertot Y, Ma J, Wörner H J 2018 Nat. Commun. 9 3723Google Scholar

    [56]

    Liu J Q, Bian X B 2021 Phys. Rev. Lett. 127 213901Google Scholar

    [57]

    Saule T, Heinrich S, Schötz J, Lilienfein N, Högner M, deVries O, Plötner M, Weitenberg J, Esser D, Schulte J 2019 Nat. Commun. 10 458

    [58]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320Google Scholar

    [59]

    Carstens H, Högner M, Saule T, Holzberger S, Lilienfein N, Guggenmos A, Jocher C, Eidam T, Esser D, Tosa V 2016 Optica 3 366Google Scholar

    [60]

    Vampa G, Ghamsari B G, Siadat Mousavi S, Hammond T J, Olivieri A, Lisicka Skrek E, Naumov A Y, Villeneuve D M, Staudte A, Berini P 2017 Nat. Phys. 13 659Google Scholar

    [61]

    Yang Y, Lu J, Manjavacas A, Luk T S, Liu H, Kelley K, Maria J P, Runnerstrom E L, Sinclair M B, Ghimire S 2019 Nat. Phys. 15 1022Google Scholar

    [62]

    Huang T, Zhu X, Li L, Liu X, Lan P, Lu P 2017 Phys. Rev. A 96 043425Google Scholar

    [63]

    Higuchi T, Stockman M I, Hommelhoff P 2014 Phys. Rev. Lett. 113 213901Google Scholar

    [64]

    Garg M, Kim H Y, Goulielmakis E 2018 Nat. Photon. 12 291Google Scholar

    [65]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462Google Scholar

    [66]

    Vampa G, Lu J, You Y S, Baykusheva D R, Wu M, Liu H, Schafer K J, Gaarde M B, Reis D A, Ghimire S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 144003Google Scholar

    [67]

    Uzan A J, Orenstein G, Jiménez Galán Á, McDonald C, Silva R E F, Bruner B D, Klimkin N D, Blanchet V, Arusi Parpar T, Krüger M 2020 Nat. Photon. 14 183Google Scholar

    [68]

    Sanari Y, Otobe T, Kanemitsu Y, Hirori H 2020 Nat. Commun. 11 1Google Scholar

    [69]

    Heinrich T, Taucer M, Kfir O, Corkum P B, Staudte A, Ropers C, Sivis M 2021 Nat. Commun. 12 3723

    [70]

    Korobenko A, Hammond T J, Zhang C, Naumov A Y, Villeneuve D M, Corkum P B 2019 Opt. Express 27 32630Google Scholar

    [71]

    Imasaka K, Kaji T, Shimura T, Ashihara S 2018 Opt. Express 26 21364Google Scholar

    [72]

    Garg M, Zhan M, Luu T T, Lakhotia H, Klostermann T, Guggenmos A, Goulielmakis E 2016 Nature 538 359Google Scholar

    [73]

    Saito N, Xia P, Lu F, Kanai T, Ishii N 2017 Optica 4 1333Google Scholar

    [74]

    Klemke N, Tancogne Dejean N, Rossi G M, Yang Y, Scheiba F, Mainz R E, Di Sciacca G, Rubio A, Kärtner F X, Mücke O D 2019 Nat. Commun. 10 1319Google Scholar

    [75]

    Tancogne Dejean N, Rubio A 2018 Sci. Adv. 4 eaao5207Google Scholar

    [76]

    Yu C, Jiang S, Wu T, Yuan G, Peng Y, Jin C, Lu R 2020 Phys. Rev. B 102 241407Google Scholar

    [77]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, Corkum P B 2015 Phys. Rev. Lett. 115 193603Google Scholar

    [78]

    Lanin A A, Stepanov E A, Fedotov A B, Zheltikov A M 2017 Optica 4 516Google Scholar

    [79]

    Luu T T, Wörner H J 2018 Nat. Commun. 9 1Google Scholar

    [80]

    Langer F, Hohenleutner M, Schmid C P, Pöllmann C, Nagler P, Korn T, Schüller C, Sherwin M S, Huttner U, Steiner J T 2016 Nature 533 225Google Scholar

    [81]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [82]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K 2014 Science 346 1348Google Scholar

    [83]

    Bionta M R, Haddad E, Leblanc A, Gruson V, Lassonde P, Ibrahim H, Chaillou J, Émond N, Otto M R, Jiménez Galán Á 2021 Phys. Rev. Res. 3 023250Google Scholar

    [84]

    Heide C, Kobayashi Y, Johnson A, Liu F, Heinz T F, Reis D A, Ghimire S 2022 Optica 9 512

    [85]

    Li L, Zhang Y, Lan P, Huang T, Zhu X, Zhai C, Yang K, He L, Zhang Q, Cao W 2021 Phys. Rev. Lett. 126 187401Google Scholar

    [86]

    Li L, Huang T, Lan P, Li J, Zhang Y, Zhu X, He L, Cao W, Lu P 2022 Phys. Rev. Lett. 128 027401Google Scholar

    [87]

    Li L, Lan P, He L, Cao W, Zhang Q, Lu P 2020 Phys. Rev. Lett. 124 157403Google Scholar

    [88]

    Jiang S, Chen J, Wei H, Yu C, Lu R, Lin C D 2018 Phys. Rev. Lett. 120 253201

    [89]

    Shao C, Lu H, Zhang X, Yu C, Tohyama T, Lu R 2022 Phys. Rev. Lett. 128 047401Google Scholar

    [90]

    Qian C, Yu C, Jiang S, Zhang T, Gao J, Shi S, Pi H, Weng H, Lu R 2022 Phys. Rev. X 12 021030

    [91]

    Guan M X, Lian C, Hu S Q, Liu H, Zhang S J, Zhang J, Meng S 2019 Phys. Rev. B 99 184306Google Scholar

    [92]

    Du T Y, Tang D, Huang X H, Bian X B 2018 Phys. Rev. A 97 043413Google Scholar

    [93]

    Song X, Zuo R, Yang S, Li P, Meier T, Yang W 2019 Opt. Express 27 2225Google Scholar

    [94]

    Zuo R, Trautmann A, Wang G, Hannes W R, Yang S, Song X, Meier T, Ciappina M, Duc H T, Yang W 2021 Ultrafast Sci. 2021Google Scholar

    [95]

    Li J, Fu S, Wang H, Xiao Z, Du H 2018 Phys. Rev. A 98 43409Google Scholar

    [96]

    Feng Y, Shi S, Li J, Ren Y, Zhang X, Chen J, Du H 2021 Phys. Rev. A 104 043525Google Scholar

    [97]

    Zhao Y T, Jiang S C, Zhao X, Chen J G, Yang Y J 2020 Opt. Lett. 45 2874Google Scholar

    [98]

    He Y L, Guo J, Gao F Y, Yang Z J, Zhang S Q, Liu X S 2021 Phys. Rev. A 104 013104Google Scholar

    [99]

    Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q, Peng L Y 2018 J. Phys. B: At. Mol. Opt. Phys. 51 16LT01Google Scholar

    [100]

    Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q, Peng L Y 2019 Phys. Rev. A 100 013412Google Scholar

    [101]

    Kong X S, Liang H, Wu X Y, Peng L Y 2021 J. Phys. B: At. Mol. Opt. Phys. 54 124004Google Scholar

    [102]

    Wu X Y, Liang H, Kong X S, Gong Q, Peng L Y 2022 Phys. Rev. E 105 055306Google Scholar

    [103]

    Chen Z Y, Qin R 2020 J. Mater. Chem. C 8 12085Google Scholar

    [104]

    Wang Z, Jiang S, Yuan G, Wu T, Li C, Qian C, Jin C, Yu C, Hua W, Lu R 2019 Sci. China Phys. Mech. Astron. 63 257311

    [105]

    Jiang S, Yu C, Chen J, Huang Y, Lu R, Lin C D 2020 Phys. Rev. B 102 155201Google Scholar

    [106]

    姚惠东, 崔波, 马思琦, 余超, 陆瑞锋 2021 物理学报 70 134207Google Scholar

    Yao H D, Cui B, Ma S Q, Yu C, Lu R F 2021 Acta Phys. Sin. 70 134207Google Scholar

  • 图 1  固体高次谐波(high-order harmonic, HH)光谱及其产生机制示意图 (a)金表面反射HH谱[7]; (b) ZnO晶体透射HH谱[8]; (c) 固体HHG机制示意图

    Fig. 1.  Solid high-order harmonic (HH) spectrum and schematic diagram of HHG mechanism: (a) Reflection HH spectrum of Au surface [7]; (b) transmission HH spectrum of ZnO crystal [8]; (c) schematic diagram of solid HHG mechanism.

    图 2  固体损伤阈值、HH谱及晶向依赖 (a) 不同带隙固体材料的损伤阈值[42]; (b) 固体Ar的HHG [32]; (c) ZnO HHG截止能量与驱动激光场强呈线性关系[8]; (d) ZnO[8], (e) MgO[9], (f) 金属TiN薄膜[46]固体材料HHG的晶向依赖

    Fig. 2.  Damage threshold and HH spectra in solids with different crystallographic orientations: (a) Damage threshold of solid materials with different bandgaps[42]; (b) high harmonic spectrum of solid Ar[32]; (c) linear dependence of the HHG cutoff energy in ZnO with the driving laser field strength[8]. Crystallographic orientation dependence of solid HHG in solid materials of (d) ZnO[8]; (e) MgO[9]; (f) TiN metallic film[46].

    图 3  纳米结构和界面工程控制HHG. (a), (b)金属-蓝宝石锥增强HHG [11] (a) 蓝宝石锥的扫描电镜显微图像; (b) 测量的HH光谱. (c)—(f) 菲尼尔波带片HHG [13] (c) 在样品平面记录的三次谐波发射模式; (d)三次和(e)五次谐波聚焦扫描; (f) 焦点强度剖面形状

    Fig. 3.  Control of solid HHG using nanostructure and interface engineering. (a), (b) Enhancement of HHG on a metal-sapphire nanotip[11]: (a) Scanning electron microscopy (SEM) image of the tips; (b) measured HH spectra. (c)–(f) HHG from Fresnel zone plate (FZP)[13]: (c) Third-harmonic emission pattern recorded at the sample plane; (d) third and (e) fifth harmonic focus scanning as a distance to sample plane; (f) focus intensity profiles.

    图 4  光场控制固体HHG (a) MgO HH对CEP依赖性[44]; (b) ZnO HH谱与双色场相对延迟关系[65]; (c) 锁定测量MgO HH谱(青色)和平均光谱(紫色)[67]; (d) 双色正交激光场的控制GaSe倒空间轨迹示意图[68]; (e) 双色反向旋圆偏光合成场控制手性HHG示意图[69]; (f) 驻波场增强MgO HHG示意图[70]

    Fig. 4.  Control of solid HHG by manipulating driving laser field: (a) CEP dependence of HH in MgO [44]; (b) HH spectra in ZnO versus delay between two-color fields[65]; (c) normalized oscillating harmonic spectrum of lock measurement (cyan) and normalized average spectrum (purple) of MgO[67]; (d) schematic diagram of k-space trajectories of electrons in GaSe, driven by perpendicularly polarized two-color field[68]; (e) schematic diagram of controlling chiral HHG by using synthetic two-color counter-rotating circularly polarized light[69]; (f) schematic diagram of the enhancement of MgO HHG in the standing wave field[70].

    图 5  固体HHG应用 (a) $ \rm{S}\rm{i}{\rm{O}}_{2} $阿秒条纹谱[72]; (b) 双层h-BN的感应电子密度随时间的演化[76]; (c) ZnO能带重构[77]; (d) ZnSe HH产率随光强的依赖关系[78]; (e) α-石英贝利曲率重构[79]; (f) β-WP2贝利曲率重构[24]

    Fig. 5.  Applications of solid HHG: (a) Attosecond-streaking spectrogram in $ \rm{S}\rm{i}{\rm{O}}_{2} $[72]; (b) time evolution of induced electronic density for distant bilayer h-BN[76]; (c)band reconstruction of ZnO[77]; (d) the power of HHG yield versus driving laser intensity for ZnSe[78]; (e) retrieved Berry curvature of $ \rm{\alpha } $-quartz[79]; (f) retrieved Berry curvature of β-WP2[24].

    图 6  光波驱动$ \rm{W}{\rm{S}\rm{e}}_{2} $准粒子碰撞[80] (a) 高阶边带强度$ {I}_{\rm{H}\rm{S}\rm{G}} $随太赫兹驱动场和带间激发脉冲之间延迟时间$ {t}_{\rm{e}\rm{x}} $的依赖关系; 太赫兹场驱动准粒子碰撞示意图, 对应电子-空穴(b)远离和(c)碰撞湮灭, 发射出边带光子$ {h\nu }_{\rm{H}\rm{S}\rm{G}} $; 不同动量k和时间延迟$ {t}_{\rm{e}\rm{x}} $的电子分布, 对应电子-空穴 (d)远离和(e) 碰撞

    Fig. 6.  Lightwave driven quasi-particle recollision in WSe2[80]: (a) Intensity of high order sideband $ {I}_{\rm{S}\rm{H}\rm{G}} $ as a function of the time delay between the THz driving fields and the interband excitation pulse; schematic diagram of the quasi-particle recollision driven by THz field, corresponding to electron-hole (b) apart and (c) recombine, annihilate and emit a sideband photon $ {h\nu }_{\rm{H}\rm{S}\rm{G}} $; electron distribution as a function of momentum k and time delay $ {t}_{\rm{e}\rm{x}} $, corresponding to electron-hole (d) separation (d) and (e) recollision.

    图 7  MgF2价电子显微成像[33] (a) 强激光场下有效晶体势; (b) $ {\rm{M}\rm{g}}^{2+} $半径测量; (c) 几种材料中最小离子/原子半径; (d) 价电子势和电子密度的重构

    Fig. 7.  Microscopic imaging of valence charge density in MgF2[33]: (a) The effective crystal potential along the[99] crystal orientation under the intense laser field; (b) radius measurement of $ {\rm{M}\rm{g}}^{2+} $; (c) minimum ion/atom radius in several materials; (d) reconstruction of charge potential and valence charge density.

    图 8  HHG检测$ \rm{V}{\rm{O}}_{2} $相变[83] (a)实验光路示意图; (b) HHG产率随泵浦光强度和延时关系. $ \rm{M}\rm{o}{\rm{S}}_{2} $电子-空穴相干性检验[84] (c) 带隙附近的电子-空穴动力学示意图; (d) 退相干时间拟合结果. 拓扑表面态HHG[17] (e) 拓扑绝缘体能带示意图; (f) HHG产率对材料解离时间依赖关系

    Fig. 8.  Detection of $ \rm{V}{\rm{O}}_{2} $ phase transition[83]: (a) Schematic diagram of experimental setup; (b) relationship of harmonic yield with pump laser intensity and delay. Test on coherence of electron-hole pair in $ \rm{M}\rm{o}{\rm{S}}_{2} $[84]: (c) Schematic diagram of electron-hole dynamics near bandgap; (d) fitted value for the dephasing time. (e) (f) HHG from topological surface[17]: (e) Schematic diagram of topological insulator band; (f) the HH yield versus the cleavage time of the sample.

  • [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [2]

    Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At., Mol. Opt. Phys. 21 L31Google Scholar

    [3]

    Corkum P á, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [4]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [5]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [6]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F 2010 Nature 466 739Google Scholar

    [7]

    Gy, Farkas, Cs, Tóth, S, D, Moustaizis, N, A, Papadogiannis 1992 Phys. Rev. A 46 R3605Google Scholar

    [8]

    Ghimire S, Dichiara A D, Sistrunk E, Agostini P, Dimauro L F, Reis D A 2010 Nat. Phys. 7 138

    [9]

    You Y S, Reis D A, Ghimire S 2017 Nat. Phys. 13 345Google Scholar

    [10]

    You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam Mirzaei S, Chini M, Chang Z, Ghimire S 2017 Nat. Commun. 8 1Google Scholar

    [11]

    Han S, Kim H, Kim Y W, Kim Y J, Kim S, Park I Y, Kim S W 2016 Nat. Commun. 7 1

    [12]

    Liu H, Guo C, Vampa G, Zhang J L, Sarmiento T, Xiao M, Bucksbaum P H, Vučković J, Fan S, Reis D A 2018 Nat. Phys. 14 1006Google Scholar

    [13]

    Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov A Y, Villeneuve D M, Ropers C, Corkum P B 2017 Science 357 303Google Scholar

    [14]

    Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2017 Nat. Phys. 13 262Google Scholar

    [15]

    Yoshikawa N, Nagai K, Uchida K, Takaguchi Y, Sasaki S, Miyata Y, Tanaka K 2019 Nat. Commun. 10 3709

    [16]

    Kobayashi Y, Heide C, Kelardeh H K, Johnson A, Liu F, Heinz T F, Reis D A, Ghimire S 2021 Ultrafast Science 2021Google Scholar

    [17]

    Bai Y, Fei F, Wang S, Li N, Li X, Song F, Li R, Xu Z, Liu P 2021 Nat. Phys. 17 311Google Scholar

    [18]

    Schmid C P, Weigl L, Grössing P, Junk V, Gorini C, Schlauderer S, Ito S, Meierhofer M, Hofmann N, Afanasiev D 2021 Nature 593 385Google Scholar

    [19]

    Yoshikawa N, Tamaya T, Tanaka K 2017 Science 356 736Google Scholar

    [20]

    Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J 2018 Nature 561 507Google Scholar

    [21]

    Cheng B, Kanda N, Ikeda T N, Matsuda T, Xia P, Schumann T, Stemmer S, Itatani J, Armitage N P, Matsunaga R 2020 Phys. Rev. Lett. 124 117402Google Scholar

    [22]

    Lv Y Y, Xu J, Han S, Zhang C, Han Y, Zhou J, Yao S H, Liu X P, Lu M H, Weng H 2021 Nat. Commun. 12 6437

    [23]

    Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, Brabec T 2014 Phys. Rev. Lett. 113 073901Google Scholar

    [24]

    Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302Google Scholar

    [25]

    Ghimire S, DiChiara A D, Sistrunk E, Ndabashimiye G, Szafruga U B, Mohammad A, Agostini P, DiMauro L F, Reis D A 2012 Phys. Rev. A 85 043836Google Scholar

    [26]

    Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata Gonokami M, Ishikawa K L 2017 Phys. Rev. A 95 043416Google Scholar

    [27]

    You Y S, Cunningham E, Reis D A, Ghimire S 2018 J. Phys. B: At. Mol. Opt. Phys. 51 114002Google Scholar

    [28]

    Osika E N, Chacón A, Ortmann L, Suárez N, Pérez Hernández J A, Szafran B, Ciappina M F, Sols F, Landsman A S, Lewenstein M 2017 Phys. Rev. X 7 021017

    [29]

    Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M, Lu P 2019 Phys. Rev. Lett. 122 193901Google Scholar

    [30]

    Zhang X, Li J, Zhou Z, Yue S, Du H, Fu L, Luo H G 2019 Phys. Rev. B 99 014304Google Scholar

    [31]

    Yue L, Gaarde M B 2020 Phys. Rev. Lett. 124 153204Google Scholar

    [32]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520Google Scholar

    [33]

    Lakhotia H, Kim H Y, Zhan M, Hu S, Meng S, Goulielmakis E 2020 Nature 583 55Google Scholar

    [34]

    Catoire F, Bachau H, Wang Z, Blaga C, Agostini P, DiMauro L F 2018 Phys. Rev. Lett. 121 143902Google Scholar

    [35]

    Li L, Lan P, Zhu X, Lu P 2021 Phys. Rev. Lett. 127 223201Google Scholar

    [36]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982

    [37]

    Goulielmakis E, Brabec T 2022 Nat. Photon. 16 411Google Scholar

    [38]

    Park J, Subramani A, Kim S, Ciappina M F 2022 Adv. Phys. X 7 2003244

    [39]

    Kruchinin S Y, Krausz F, Yakovlev V S 2018 Rev. Mod. Phys. 90 021002Google Scholar

    [40]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A 2012 Science 336 1287Google Scholar

    [41]

    Ye P, He X, Teng H, Zhan M, Zhong S, Zhang W, Wang L, Wei Z 2014 Phys. Rev. Lett. 113 073601Google Scholar

    [42]

    Gallais L, Douti D B, Commandre M, Batavičiūtė G, Pupka E, Ščiuka M, Smalakys L, Sirutkaitis V, Melninkaitis A 2015 J. Appl. Phys. 117 223103Google Scholar

    [43]

    Lewenstein M, Balcou P, Ivanov M Y, L’huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [44]

    You Y S, Wu M, Yin Y, Chew A, Ren X, Gholam Mirzaei S, Browne D A, Chini M, Chang Z, Schafer K J 2017 Opt. Lett. 42 1816Google Scholar

    [45]

    Langer F, Hohenleutner M, Huttner U, Koch S W, Kira M, Huber R 2017 Nat. Photon. 11 227Google Scholar

    [46]

    Korobenko A, Saha S, Godfrey A T K, Gertsvolf M, Naumov A Y, Villeneuve D M, Boltasseva A, Shalaev V M, Corkum P B 2021 Nat. Commun. 12 4981Google Scholar

    [47]

    Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V, Tsai J S 2003 Nature 421 823Google Scholar

    [48]

    Baykusheva D, Chacón A, Lu J, Bailey T P, Sobota J A, Soifer H, Kirchmann P S, Rotundu C, Uher C, Heinz T F 2021 Nano Lett. 21 8970Google Scholar

    [49]

    Lou Z, Zheng Y, Liu C, Zhang L, Ge X, Li Y, Wang J, Zeng Z, Li R, Xu Z 2020 Opt. Commun. 469 125769Google Scholar

    [50]

    You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam Mirzaei S, Chini M, Chang Z, Ghimire S 2017 Nat. Commun. 8 724Google Scholar

    [51]

    Jürgens P, Liewehr B, Kruse B, Peltz C, Engel D, Husakou A, Witting T, Ivanov M, Vrakking M J J, Fennel T 2020 Nat. Phys. 16 1035Google Scholar

    [52]

    DiChiara A D, Sistrunk E, Miller T A, Agostini P, DiMauro L F 2009 Opt. Express 17 20959Google Scholar

    [53]

    Flettner A, Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G 2003 Appl. Phys. B 77 747

    [54]

    Svoboda V, Yin Z, Luu T T, Wörner H J 2021 Opt. Express 29 30799Google Scholar

    [55]

    Luu T T, Yin Z, Jain A, Gaumnitz T, Pertot Y, Ma J, Wörner H J 2018 Nat. Commun. 9 3723Google Scholar

    [56]

    Liu J Q, Bian X B 2021 Phys. Rev. Lett. 127 213901Google Scholar

    [57]

    Saule T, Heinrich S, Schötz J, Lilienfein N, Högner M, deVries O, Plötner M, Weitenberg J, Esser D, Schulte J 2019 Nat. Commun. 10 458

    [58]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320Google Scholar

    [59]

    Carstens H, Högner M, Saule T, Holzberger S, Lilienfein N, Guggenmos A, Jocher C, Eidam T, Esser D, Tosa V 2016 Optica 3 366Google Scholar

    [60]

    Vampa G, Ghamsari B G, Siadat Mousavi S, Hammond T J, Olivieri A, Lisicka Skrek E, Naumov A Y, Villeneuve D M, Staudte A, Berini P 2017 Nat. Phys. 13 659Google Scholar

    [61]

    Yang Y, Lu J, Manjavacas A, Luk T S, Liu H, Kelley K, Maria J P, Runnerstrom E L, Sinclair M B, Ghimire S 2019 Nat. Phys. 15 1022Google Scholar

    [62]

    Huang T, Zhu X, Li L, Liu X, Lan P, Lu P 2017 Phys. Rev. A 96 043425Google Scholar

    [63]

    Higuchi T, Stockman M I, Hommelhoff P 2014 Phys. Rev. Lett. 113 213901Google Scholar

    [64]

    Garg M, Kim H Y, Goulielmakis E 2018 Nat. Photon. 12 291Google Scholar

    [65]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462Google Scholar

    [66]

    Vampa G, Lu J, You Y S, Baykusheva D R, Wu M, Liu H, Schafer K J, Gaarde M B, Reis D A, Ghimire S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 144003Google Scholar

    [67]

    Uzan A J, Orenstein G, Jiménez Galán Á, McDonald C, Silva R E F, Bruner B D, Klimkin N D, Blanchet V, Arusi Parpar T, Krüger M 2020 Nat. Photon. 14 183Google Scholar

    [68]

    Sanari Y, Otobe T, Kanemitsu Y, Hirori H 2020 Nat. Commun. 11 1Google Scholar

    [69]

    Heinrich T, Taucer M, Kfir O, Corkum P B, Staudte A, Ropers C, Sivis M 2021 Nat. Commun. 12 3723

    [70]

    Korobenko A, Hammond T J, Zhang C, Naumov A Y, Villeneuve D M, Corkum P B 2019 Opt. Express 27 32630Google Scholar

    [71]

    Imasaka K, Kaji T, Shimura T, Ashihara S 2018 Opt. Express 26 21364Google Scholar

    [72]

    Garg M, Zhan M, Luu T T, Lakhotia H, Klostermann T, Guggenmos A, Goulielmakis E 2016 Nature 538 359Google Scholar

    [73]

    Saito N, Xia P, Lu F, Kanai T, Ishii N 2017 Optica 4 1333Google Scholar

    [74]

    Klemke N, Tancogne Dejean N, Rossi G M, Yang Y, Scheiba F, Mainz R E, Di Sciacca G, Rubio A, Kärtner F X, Mücke O D 2019 Nat. Commun. 10 1319Google Scholar

    [75]

    Tancogne Dejean N, Rubio A 2018 Sci. Adv. 4 eaao5207Google Scholar

    [76]

    Yu C, Jiang S, Wu T, Yuan G, Peng Y, Jin C, Lu R 2020 Phys. Rev. B 102 241407Google Scholar

    [77]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, Corkum P B 2015 Phys. Rev. Lett. 115 193603Google Scholar

    [78]

    Lanin A A, Stepanov E A, Fedotov A B, Zheltikov A M 2017 Optica 4 516Google Scholar

    [79]

    Luu T T, Wörner H J 2018 Nat. Commun. 9 1Google Scholar

    [80]

    Langer F, Hohenleutner M, Schmid C P, Pöllmann C, Nagler P, Korn T, Schüller C, Sherwin M S, Huttner U, Steiner J T 2016 Nature 533 225Google Scholar

    [81]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [82]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K 2014 Science 346 1348Google Scholar

    [83]

    Bionta M R, Haddad E, Leblanc A, Gruson V, Lassonde P, Ibrahim H, Chaillou J, Émond N, Otto M R, Jiménez Galán Á 2021 Phys. Rev. Res. 3 023250Google Scholar

    [84]

    Heide C, Kobayashi Y, Johnson A, Liu F, Heinz T F, Reis D A, Ghimire S 2022 Optica 9 512

    [85]

    Li L, Zhang Y, Lan P, Huang T, Zhu X, Zhai C, Yang K, He L, Zhang Q, Cao W 2021 Phys. Rev. Lett. 126 187401Google Scholar

    [86]

    Li L, Huang T, Lan P, Li J, Zhang Y, Zhu X, He L, Cao W, Lu P 2022 Phys. Rev. Lett. 128 027401Google Scholar

    [87]

    Li L, Lan P, He L, Cao W, Zhang Q, Lu P 2020 Phys. Rev. Lett. 124 157403Google Scholar

    [88]

    Jiang S, Chen J, Wei H, Yu C, Lu R, Lin C D 2018 Phys. Rev. Lett. 120 253201

    [89]

    Shao C, Lu H, Zhang X, Yu C, Tohyama T, Lu R 2022 Phys. Rev. Lett. 128 047401Google Scholar

    [90]

    Qian C, Yu C, Jiang S, Zhang T, Gao J, Shi S, Pi H, Weng H, Lu R 2022 Phys. Rev. X 12 021030

    [91]

    Guan M X, Lian C, Hu S Q, Liu H, Zhang S J, Zhang J, Meng S 2019 Phys. Rev. B 99 184306Google Scholar

    [92]

    Du T Y, Tang D, Huang X H, Bian X B 2018 Phys. Rev. A 97 043413Google Scholar

    [93]

    Song X, Zuo R, Yang S, Li P, Meier T, Yang W 2019 Opt. Express 27 2225Google Scholar

    [94]

    Zuo R, Trautmann A, Wang G, Hannes W R, Yang S, Song X, Meier T, Ciappina M, Duc H T, Yang W 2021 Ultrafast Sci. 2021Google Scholar

    [95]

    Li J, Fu S, Wang H, Xiao Z, Du H 2018 Phys. Rev. A 98 43409Google Scholar

    [96]

    Feng Y, Shi S, Li J, Ren Y, Zhang X, Chen J, Du H 2021 Phys. Rev. A 104 043525Google Scholar

    [97]

    Zhao Y T, Jiang S C, Zhao X, Chen J G, Yang Y J 2020 Opt. Lett. 45 2874Google Scholar

    [98]

    He Y L, Guo J, Gao F Y, Yang Z J, Zhang S Q, Liu X S 2021 Phys. Rev. A 104 013104Google Scholar

    [99]

    Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q, Peng L Y 2018 J. Phys. B: At. Mol. Opt. Phys. 51 16LT01Google Scholar

    [100]

    Jin J Z, Liang H, Xiao X R, Wang M X, Chen S G, Wu X Y, Gong Q, Peng L Y 2019 Phys. Rev. A 100 013412Google Scholar

    [101]

    Kong X S, Liang H, Wu X Y, Peng L Y 2021 J. Phys. B: At. Mol. Opt. Phys. 54 124004Google Scholar

    [102]

    Wu X Y, Liang H, Kong X S, Gong Q, Peng L Y 2022 Phys. Rev. E 105 055306Google Scholar

    [103]

    Chen Z Y, Qin R 2020 J. Mater. Chem. C 8 12085Google Scholar

    [104]

    Wang Z, Jiang S, Yuan G, Wu T, Li C, Qian C, Jin C, Yu C, Hua W, Lu R 2019 Sci. China Phys. Mech. Astron. 63 257311

    [105]

    Jiang S, Yu C, Chen J, Huang Y, Lu R, Lin C D 2020 Phys. Rev. B 102 155201Google Scholar

    [106]

    姚惠东, 崔波, 马思琦, 余超, 陆瑞锋 2021 物理学报 70 134207Google Scholar

    Yao H D, Cui B, Ma S Q, Yu C, Lu R F 2021 Acta Phys. Sin. 70 134207Google Scholar

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术. 物理学报, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究. 物理学报, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [3] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展. 物理学报, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [4] 李卫艳, 刘娜, 王赏. 拉伸到大核间距的分子离子谐波辐射谱上复杂干涉结构的物理起源. 物理学报, 2023, 72(8): 083101. doi: 10.7498/aps.72.20222410
    [5] 龙天洋, 李伟, 许浩天, 王逍. 时空耦合畸变对超快超强激光参数测试及性能评估的影响. 物理学报, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [6] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [7] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术. 物理学报, 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [8] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [9] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211665
    [10] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [11] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [12] 牛璐, 王鹿霞. 外场对分子纳米结电流-电压特性的影响. 物理学报, 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [13] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [14] 王胭脂, 邵建达, 易葵, 齐红基, 王玎, 冷雨欣. 宽带啁啾镜对的设计和制备. 物理学报, 2013, 62(20): 204207. doi: 10.7498/aps.62.204207
    [15] 牛海亮, 章岳光, 沈伟东, 余鹏, 李旸晖, 刘旭. 飞秒激光器中超宽带色散补偿啁啾镜对的设计. 物理学报, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [16] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [17] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [18] 葛愉成. 高次谐波辐射发射特性研究. 物理学报, 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [19] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究. 物理学报, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [20] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
计量
  • 文章访问数:  9608
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-08-05
  • 上网日期:  2022-11-25
  • 刊出日期:  2022-12-05

/

返回文章
返回