搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平凹多通腔的非线性脉冲压缩技术研究

李聘滨 滕浩 田文龙 黄振文 朱江峰 钟诗阳 运晨霞 刘文军 魏志义

引用本文:
Citation:

基于平凹多通腔的非线性脉冲压缩技术研究

李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义

Studies on nonlinear pulse compression technique based on multi-pass in plano-cancave cavity

Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi
PDF
导出引用
  • 采用平凹多通腔和固体薄片组的非线性脉冲光谱展宽与压缩方案开展了100W皮秒激光非线性脉冲压缩的研究。以多片熔融石英薄片作为非线性介质,在平凹腔中皮秒激光通过自相位调制将光谱宽度由0.24nm展宽至4.8nm,用光栅对进行色散补偿压缩,实现压缩后的脉冲宽度为483fs,对应压缩比为22,最终输出飞秒激光的平均功率为44.2W。相对于常规多通腔方案,该平凹腔结构紧凑,光路稳定性好,压缩比高,非常有利于非线性光谱展宽与压缩的实现。
    Ultrafast femtosecond laser systems with hundreds of microjoules of energy operating at repetition frequencies of several kilohertz have very important applications for many fields such as medicine,mid-infrared laser generation,industrial processing and vibrational spectroscopy.The Chirped Pulse Amplification (CPA) technique provides a feasible path to obtain light sources with such parameters.However,the use of chirped pulse amplification increases the technical complexity and cost of the laser system.Recently,the proposal of Multi-pass Cell (MPC) nonlinear pulse compression technique allows us to obtain high power ultrafast femtosecond pulses with reduced technical complexity and cost.The composition of the device requires only two concave mirrors and a nonlinear medium in between.In the past seven years,the Multi-pass Cell nonlinear pulse compression technique has been developed so much that it has become possible to obtain ultrashort pulses with average power of more than a few kW and peak power of tens to hundreds of TW.In this work,we have achieved nonlinear pulse compression for a 100 W picosecond laser using an improved nonlinear pulse compression scheme that combines a hybrid of a plano-cancave multi-pass cell and multi-thin-plate.Using fused silica plates in plano-cancave cavity,the spectral bandwidth (FWHM) of input picosecond laser is broadened from 0.24 nm to 4.8 nm due to self-phase modulation effect,the pulse is compressed to 483 fs by dispersion compensation using grating pairs,which corresponds the compression factor of 22,and the final output power of 44.2 W is obtained.As comparison of conventional MPC,the plano-cancave cavity scheme we developed is a very promising solution for nonlinear compression due to its compact,more stability and large compression ratio.
  • [1]

    Mourou G. Nobel Lecture:Extreme light physics and application[J]. 2019 Reviews of Modern Physics. 91 030501.

    [2]

    Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F. Third-generation femtosecond technology[J]. 2014 Optica. 1 45.

    [3]

    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. 1985 Optics communications. 55 447.

    [4]

    Brabec T, Krausz F. Intense few-cycle laser fields:Frontiers of nonlinear optics[J]. 2000 Reviews of Modern Physics. 72 545.

    [5]

    Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T. Few-Cycle-Pulse Generation and its Applications[C]//Conference on Lasers and Electro-Optics/Pacific Rim. 2001 Optica Publishing Group. TuJ3 1.

    [6]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility[J]. 2018 Optics letters. 43 5681.

    [7]

    Bagnoud V, Salin F. Amplifying laser pulses to the terawatt level at a 1-kilohertz repetition rate[J]. 2000 Applied Physics B. 70 S165.

    [8]

    Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y. Numerical and experimental analysis of Yb:YAG thin disk regenerative amplifier[J]. 2021 IEEE Photonics Journal. 13 1.

    [9]

    Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P. 800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3[J]. 2014 Optics letters. 39 6604.

    [10]

    Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb:YAG slab at room temperature[J]. 2018 Optics Letters. 43 3838.

    [11]

    Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C. High efficiency and compact Yb:YAG slab all-solid-state laser at room temperature[J]. 2020强激光与粒子束. 32 121009.

    [12]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier[J]. 2010 Optics letters. 35 4169.

    [13]

    Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N. Compact 20 W femtosecond laser system based on fiber laser seeder, Yb:YAG rod amplifier and chirped volume Bragg grating compressor[J]. 2018 Optics express. 26 31873.

    [14]

    Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J. Radiation-balanced silica fiber amplifier[J]. 2021 Physical Review Letters. 127 013903.

    [15]

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chinese J. Lasers 39 7(in Chinese)[高清松,胡浩,裴正平,童立新,周唐建,唐淳2012中国激光39 7]

    [16]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. 2020 Optics Express. 28 11415.

    [17]

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117(in Chinese)[王海林,董静,刘贺言,郝婧婕,朱晓,张金伟2021光子学报50 117]

    [18]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F. 1 kW, 200 mJ picosecond thin-disk laser system[J]. 2017 Optics letters. 42 1381.

    [19]

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chinese J. Lasers 48 41(in Chinese)[董雪岩,李平雪,李舜,王婷婷,杨敏2021中国激光48 41]

    [20]

    Khazanov E A. Post-compression of femtosecond laser pulses using self-phase modulation:from kilowatts to petawatts in 40 years[J]. 2022 Quantum Electronics. 52 208.

    [21]

    Nagy T, Simon P, Veisz L. High-energy few-cycle pulses:post-compression techniques[J]. 2021 Advances in Physics:X. 6 1845795.

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M. Multi-pass cells for post-compression of ultrashort laser pulses[J]. 2022 Optica. 9 197.

    [23]

    Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. 2012 Optics letters. 37 4407.

    [24]

    Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. 1996 Applied Physics Letters. 68 2793.

    [25]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources[J]. 2015 Light:Science&Applications. 4 e320.

    [26]

    Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power[J]. 2011 Optics letters. 36 4605.

    [27]

    Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers[J]. 1964 Applied Optics. 3 523.

    [28]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P. Nonlinear pulse compression in a multi-pass cell[J]. 2016 Optics Letters. 41 4511.

    [29]

    Grebing C, Müller M, Buldt J, Stark H, Limpert J. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. 2020 Optics letters. 45 6250.

    [30]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs[J]. 2021 Optics letters 46 929.

    [31]

    Weitenberg J, Saule T, Schulte J, Russbueldt P. Nonlinear Pulse Compression to Sub-40 fs at 4.5μJ Pulse Energy by Multi-Pass-Cell Spectral Broadening[J]. 2017 IEEE Journal of Quantum Electronics. 53 1.

    [32]

    Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L. Multi-gigawatt peak power post-compression in a bulk multi-pass cell at a high repetition rate[J]. 2022 Optics Letters. 47 5084.

    [33]

    Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M. Factor 30 pulse compression by hybrid multipass multiplate spectral broadening[J].2022 Ultrafast Science.

    [34]

    Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y. Generation of 601 fs pulse from an 8 kHz Nd:YVO4 picosecond laser by multi-pass-cell spectral broadening[J]. 2021 Chinese Optics Letters. 19 093201.

    [35]

    Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P. Nonlinear pulse compression based on a gas-filled multipass cell[J]. 2018 Optics letters. 43 2252.

    [36]

    Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H. Temporal pulse quality of a Yb:YAG burst-mode laser post-compressed in a multi-pass cell[J]. 2021 Optics letters. 46 4686.

    [37]

    Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R. Scalable 30 fs laser source with 530 W average power[J]. 2019 Optics Letters. 44 5222.

    [38]

    Rajhans S,Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M. Post-compression of 8.6 mJ ps-pulses from an Yb:YAG Innoslab amplifier using a compact multi-pass cell[C]//Advanced Solid State Lasers. 2021 Optica Publishing Group. AW2A 6.

    [39]

    Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J. Nonlinear pulse compression to 51-W average power GW-class 35-fs pulses at 2-µm wavelength in a gas-filled multi-pass cell[J]. 2022 Optics Letters. 47 3511.

    [40]

    Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L'Huillier A, Arnold C L, Hartl I, Heyl C M. Postcompression of picosecond pulses into the few-cycle regime[J]. 2020 Optics letters. 45 2572.

    [41]

    Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M. Few-cycle pulse generation by double-stage hybrid multi-pass multi-plate nonlinear pulse compression[J]. 2023 Optics Letters. 48 984.

    [42]

    Omar A, Vogel T, Hoffmann M, Saraceno C J. Spectral broadening of 2-mJ femtosecond pulses in a compact air-filled convex-concave multi-pass cell[J]. 2023 Optics Letters. 48 1458.

    [43]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I. High-energy bow tie multi-pass cells for nonlinear spectral broadening applications[J]. 2022 Journal of Physics:Photonics. 4 014002.

    [44]

    Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J. Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power[J]. 2019 Optics Letters. 44 4115.

    [45]

    Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P. High-power two-cycle ultrafast source based on hybrid nonlinear compression[J]. 2019 Optics express. 27 1958.

    [46]

    Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M. Single-stage few-cycle nonlinear compression of milliJoule energy Ti:Sa femtosecond pulses in a multipass cell[J].2021 Optics Letters. 46 5264.

  • [1] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, doi: 10.7498/aps.72.20230088
    [2] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, doi: 10.7498/aps.71.20211665
    [3] 龙天洋, 李伟, 许浩天, 王逍. 时空耦合畸变对超快超强激光参数测试及性能评估的影响. 物理学报, doi: 10.7498/aps.71.20220563
    [4] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统. 物理学报, doi: 10.7498/aps.71.20212282
    [5] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, doi: 10.7498/aps.71.20221115
    [6] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, doi: 10.7498/aps.70.20211665
    [7] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, doi: 10.7498/aps.70.20210496
    [8] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, doi: 10.7498/aps.69.20201235
    [9] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, doi: 10.7498/aps.67.20180486
    [10] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩. 物理学报, doi: 10.7498/aps.66.204207
    [11] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, doi: 10.7498/aps.64.094203
    [12] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, doi: 10.7498/aps.64.024214
    [13] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, doi: 10.7498/aps.61.154210
    [14] 牛海亮, 章岳光, 沈伟东, 余鹏, 李旸晖, 刘旭. 飞秒激光器中超宽带色散补偿啁啾镜对的设计. 物理学报, doi: 10.7498/aps.61.014211
    [15] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, doi: 10.7498/aps.60.014219
    [16] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, doi: 10.7498/aps.59.4720
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, doi: 10.7498/aps.57.7693
    [18] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, doi: 10.7498/aps.56.2212
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, doi: 10.7498/aps.54.4747
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  161
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-28

/

返回文章
返回