搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极紫外飞秒光学频率梳的产生与研究进展

郑立 刘寒 汪会波 王阁阳 蒋建旺 韩海年 朱江峰 魏志义

引用本文:
Citation:

极紫外飞秒光学频率梳的产生与研究进展

郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义

Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet

Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi
PDF
HTML
导出引用
  • 飞秒光学频率梳对光学频率精密测量和超快科学的发展起到了至关重要的作用, 而将其拓展至极紫外波段, 即可作为阿秒脉冲、紫外非线性光学、电子跃迁光谱探测以及量子电动力学等研究的有力工具. 极紫外飞秒光学频率梳需要通过高重复频率、高峰值功率的飞秒激光驱动高次谐波间接产生. 本文从极紫外飞秒光学频率梳的产生原理出发, 首先对其驱动源参数要求以及获取方式进行了介绍, 分别对比了啁啾脉冲放大技术、光参量啁啾脉冲放大技术、光纤放大技术和飞秒共振增强放大技术用于驱动极紫外飞秒光学频率梳产生的优缺点及适用性. 其次, 针对共线和非共线产生高次谐波的两种方式, 详细阐述了国际上常用的几种极紫外飞秒光学频率梳的耦合输出方法. 最后, 从基于飞秒共振增强腔、光参量啁啾脉冲放大器和由振荡器直接产生的极紫外飞秒光学频率梳三个角度出发, 对其研究进展进行了综述, 并对目前尚待优化的问题进行了总结.
    Femtosecond optical frequency combs have revolutionized the precision measurement of optical frequency and ultrafast science. Furthermore, the frequency combs expended to extreme ultraviolet (XUV) wavelength could provide an effective tool in attosecond pulse generation, nonlinear optics in ultraviolet, spectroscopy of electronic transitions and experiment of quantum electrodynamics. XUV femtosecond optical frequency combs need to be indirectly obtained by means of high-harmonic generation (HHG) drived by femtosecond pulses with high-repetition rate and extremely high peak power. In this review, firstly, the generation principle and the driving laser source requirements of femtosecond pulses generation in XUV spectral range are introduced. Basing on the requirements of driving laser sources, the several femtosecond laser amplification techniques are described, such as chirped pulse amplification (CPA), optical parametric chirped pulse amplification (OPCPA), double cladding pumped fiber amplifier and femtosecond enhancement cavity (fsEC). Meanwhile, the relative merits and applicability of which for XUV femtosecond optical frequency combs generation are compared. Secondly, in the HHG process, the XUV is generated collinearly or non-collinearly with the optical driving field. For the collinear generation process, one of the fundamental challenges is the design of a high-efficiency XUV output coupler. Here, three methods for out-coupling the XUV are expounded. Also, the theory of non-collinear XUV generation is mentioned. Finally, some typical research progress of XUV femtosecond optical frequency combs generation based on fsEC, OPCPA and femtosecond oscillators are reviewed respectively, as well as the current problems that need to be optimized are summarized.
      通信作者: 韩海年, hnhan@iphy.ac.cn ; 朱江峰, jfzhu@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774277, 60808007)、中央高校基本科研业务费(批准号: JB190501, ZD2006)和陕西省自然科学基础研究计划(批准号: 2019JCW-03)资助的课题
      Corresponding author: Han Hai-Nian, hnhan@iphy.ac.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774277, 60808007), the Fundamental Research Funds for the Central Universities (Grant Nos.JB190501, ZD2006), and the Natural Science Basic Research Program of Shaanxi, China (Grant No.2019JCW-03)
    [1]

    Eckstein J N, Ferguson A I, Hänsch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [2]

    Baird K M, Evenson K M, Hanes G R, Jennings D A, Petersen F R 1979 Opt. Lett. 4 263Google Scholar

    [3]

    Layer H P, Rowley W R C, Marx B R 1981 Opt. Lett. 6 188Google Scholar

    [4]

    Pollock C R, Jennings D A, Petersen F R, Wells J S, Drullinger R E, Beaty E C, Evenson K M 1983 Opt. Lett. 8 133Google Scholar

    [5]

    Jennings D A, Pollock C R, Petersen F R, Drullinger R E, Evenson K M, Wells J S, Hall J L, Layer H P 1983 Opt. Lett. 8 136Google Scholar

    [6]

    Ma L, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers S, Oates C W, Hollberg L, Diddams S A 2004 Science 303 1843Google Scholar

    [7]

    Merkt F, Softley T P 1992 Chem. Phys. 96 4149

    [8]

    Herrmann M, Haas M D, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knunz S, Kolachevsky N, Schussler H A, Hänsch T W, Udem T 2009 Phys. Rev. A. 79 052505Google Scholar

    [9]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S E 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [10]

    Eyler E E, Chieda D E, Stowe M C, Thorpe M J, Rschibi T R, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [11]

    Peik E, Tamm C 2003 Europhys. Lett. 61 181Google Scholar

    [12]

    Rellergert W G, Demille D, Greco R, Hehlen M P, Torgerson, J R, Hudson E R 2010 Phys. Rev. Lett. 104 200802Google Scholar

    [13]

    Campbell C J, Radnaev A G, Kuzmich A 2011 Phys. Rev. Lett. 106 223001Google Scholar

    [14]

    Murphy M T, Webb J K, Flambaum V V 2003 Mon. Not. R. Astron. Soc. 345 609Google Scholar

    [15]

    Berengut J C, Dzuba V A, Flambaum V V, Ong A 2011 Phys. Rev. Lett. 106 210802Google Scholar

    [16]

    Mcpherson A, Gibson G N, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B. 4 595Google Scholar

    [17]

    Ferray M, Lhuillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B-AT Mol. Opt. 21 L31Google Scholar

    [18]

    Lhuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [19]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766Google Scholar

    [20]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [21]

    Popmintchev T, Chen M, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A L, Hernandezgarcia C, Plaja L, Becker A, Jaronbecker A, Mumane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [22]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [23]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [24]

    Ross I N, Matousek P, Towrie M, Langley A J, Collier J L 1997 Opt. Commun. 144 125Google Scholar

    [25]

    Mears R J, Reekie L, Poole S B, Payne D N 1985 Electron. Lett. 21 738Google Scholar

    [26]

    Mears R J, Reekie L, Poole S B, Payne D N 1986 Electron. Lett. 22 159Google Scholar

    [27]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Optical Fiber Communication Conference Reno, United States, 19 January, 1987 pWI2

    [28]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Electron. Lett. 23 1026Google Scholar

    [29]

    Desurvire E, Simpson J R, Becker P C 1987 Opt. Lett. 12 888Google Scholar

    [30]

    Snitzer E, Po H, Hakimi F, Tumminelli R P, Mccollum B C 1988 Optical Fiber Sensors New Orleans, United States, 27 January, 1988 pPD5

    [31]

    Po H, Snitzer E, Tumminelli R P, Zenteno L, Hakimi F, Cho N M, Haw T 1989 Optical Fiber Communication Conference Houston, United States, 6 February, 1989 pPD7

    [32]

    Jones R J, Ye J 2002 Opt. Lett. 27 1848Google Scholar

    [33]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [34]

    Zimmermann C, Vuletic V, Hemmerich A, Hänsch T W 1995 Appl. Phys. Lett. 66 2318Google Scholar

    [35]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B. 24 576Google Scholar

    [36]

    Jones R J, Ye J 2004 Opt. Lett. 29 2812Google Scholar

    [37]

    Jones R J, Thomann I, Ye J 2004 Phys. Rev. A. 69 051803Google Scholar

    [38]

    Devoe R G, Fabre C, Jungmann K, Hoffnagle J A, Brewer R G 1988 Phys. Rev. A. 37 1802Google Scholar

    [39]

    Moll K D, Jones R J, Ye J 2005 Opt. Express 13 1672Google Scholar

    [40]

    韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206Google Scholar

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206Google Scholar

    [41]

    Pupeza I, Fill E E, Krausz F 2011 Opt. Express 19 12108Google Scholar

    [42]

    Mills A K, Hammond T J, Lam M H, Jones D J 2012 J. Phys. B 45 142001Google Scholar

    [43]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [44]

    Gohle C, Udem T, Rauschenberger J, Holzwarth R, Herrmann M G, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [45]

    Lee J, Carlson D R, Jones R J 2011 Opt. Express 19 23315Google Scholar

    [46]

    Yost D C, Schibli T R, Ye J 2008 Opt. Lett. 33 1099Google Scholar

    [47]

    Yost D C, Cingoz A, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2011 Opt. Express 19 23483Google Scholar

    [48]

    Yang Y, Susmann F, Zherebtsov S, Pupeza I, Kaster J, Lehr D, Fuchs H J, Kley E, Fill EE, Duan X, Zhao Z S, Krausz F, Stebbings S L, Kling, M. F 2011 Opt. Express 19 1954Google Scholar

    [49]

    Moll K D, Jones R J, Ye J 2006 Opt. Express 14 8189Google Scholar

    [50]

    Weitenberg J, Rusbuldt P, Eidam T, Pupeza I 2011 Opt. Express 19 9551Google Scholar

    [51]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbueldt P, Rauschenberger J, Limpert J, Udem T, Tuennermann A, Hänsch T W, Apolonskiy A, Krausz F, Fi ll, E. E 2013 Nat. Photonics 7 608Google Scholar

    [52]

    Paschotta, R 2006 Opt. Express 14 6069Google Scholar

    [53]

    Lhuillier A, Balcou P, Candel S, Schafer K J, Kulander K C 1992 Phys. Rev. A. 46 2778Google Scholar

    [54]

    Wu J, Zeng H 2007 Opt. Lett. 32 3315Google Scholar

    [55]

    Ozawa A, Vernaleken A, Schneider W, Gotlibovych I, Udem T, Hänsch T W 2008 Opt. Express 16 6233Google Scholar

    [56]

    Fomichev S V, Breger P, Carre B, Agostini P, Zaretsky D F 2002 Laser Phys. 12 383

    [57]

    Ozawa A, Vernaleken A, Gotlibovych I, Hommelhoff P, Udem T, Hänsch T W 2010 Proceedings of Spie the International Society for Optical Engineering Brussels, Belgium, 4 June, 2010 p7728

    [58]

    Allison T K, Cingoz A, Yost D C, Ye J 2011 Phys. Rev. Lett. 107 183903Google Scholar

    [59]

    Carlson D R, Lee J, Mongelli J, Wright E M, Jones R J 2011 Opt. Lett. 36 2991Google Scholar

    [60]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015Google Scholar

    [61]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tunnermann A 2010 Opt. Lett. 35 94Google Scholar

    [62]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [63]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [64]

    Pupeza I, Eidam T, Rauschenberger J, Bernhardt B, Ozawa A, Fill E E, Apolonski A, Udem T, Limpert J, Alahmed Z A, Azzeer A M, Tunnermann A, Hänsch T W, Krausz, F 2010 Opt. Lett. 35 2052Google Scholar

    [65]

    Hao Q, Li W X, Zeng H P 2009 Opt. Express 17 5815Google Scholar

    [66]

    Bernhardt B, Ozawa A, Pupeza I, Vernaleken A, Kobayashi Y, Holzwarth R, Fill E E, Krausz F, Hänsch T W, Udem T 2011 Quantum Electronics and Laser Science Conference Baltimore, United States, 1–6 May, 2011 pQTuF3

    [67]

    Ditmire T, Crane J K, Nguyen H, Dasilva L B, Perry 1995 Phys. Rev. A. 51 R902Google Scholar

    [68]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [69]

    Pupeza I, Holzberger S, Eidam T, Esser D, Weitenberg J, Carstens H, Rusbuldt P, Limpert J, Udem T, Tunnermann A, Hänsch T W, Krausz F, Fill E E 2013 The European Physical Journal Conferences, Brussels, Belgium, 4 June, 2013 p10023

    [70]

    Carstens H, Högner M, Saule T, Holzberger S, Lilienfein N, Guggenmos A, Jocher C, Eidam T, Esser D, Tosa V, Pervak V, Limpert J, Tunnermann A, Krausz F, Pupeza I 2016 Optica 3 366Google Scholar

    [71]

    Jocher C, Eidam T, Hadrich S, Limpert J, Tunnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [72]

    Porat G, Heyl C, Schoun S B, Benko C, Dorre N, Corwin K L, Ye J 2017 Nat. Photonics 12 387

    [73]

    Drake G W, Yan Z C 2008 Can. J. Phys. 86 45Google Scholar

    [74]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [75]

    Pálffy A 2010 Contemp. Phys. 51 471Google Scholar

    [76]

    Ubachs W, Salumbides E J, Eikema K S, Oliveira N D, Nahon L 2014 Electron. Spectrosc. Relat. Phenom. 196 159Google Scholar

    [77]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [78]

    Zhang C, Schoun S B, Heyl C, Porat G, Gaarde M B, Ye J 2020 Phys. Rev. Lett. 125 093902

    [79]

    Pinkert T J, Kandula D Z, Gohle C, Barmes I, Morgenweg J, Eikema K S 2011 Opt. Lett. 36 2026Google Scholar

    [80]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar

    [81]

    Emaury F, Diebold A, Saraceno C J, Keller U 2015 Optica 2 980Google Scholar

    [82]

    Labaye F, Gaponenko M S, Wittwer V J, Diebold A, Paradis C, Modsching N, Merceron L, Emaury F, Graumann I J, Phillips C R, Saraceno C J, Krankel C, Keller U, Sudmeyer T 2017 Opt. Lett. 42 5170Google Scholar

    [83]

    Yu Z J, Han H N, Xie Y, Peng Y N, Xu X D, Wei Z Y 2016 Opt. Express 24 3103Google Scholar

    [84]

    Tian W L, Yu C, Zhu J F, Zhang D C, Wei Z Y, Xu X D, Xu J 2019 Opt. Express 27 21448Google Scholar

    [85]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [86]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

  • 图 1  高次谐波与XUV飞秒光学频率梳光谱

    Fig. 1.  Spectrum of High-Harmonic generation and XUV optical frequency comb

    图 2  啁啾脉冲放大技术

    Fig. 2.  Chirped pulse amplification

    图 3  光参量啁啾脉冲放大技术

    Fig. 3.  Optical parametric chirped pulse amplification

    图 4  F-P腔的相干脉冲放大:(a)时域中; (b)频域中

    Fig. 4.  Coherent pulse amplification in F-P cavity: (a)Time domain; (b)frequency domain.

    图 5  布儒斯特片以及衍射光栅镜耦合输出XUV:(a)布儒斯特片;(b)衍射光栅镜

    Fig. 5.  XUV output coupling by Brewster plate and grating mirror: (a)Brewster plate; (b)grating mirror.

    图 6  高次谐波通过腔镜中的一个小孔耦合输出

    Fig. 6.  The output coupling of high-harmonic light from a small aperture in one of the cavity mirrors.

    图 7  (a)XUV输出耦合器照片; (b)镜子表面小孔的近距离照片[51]

    Fig. 7.  (a)Photograph of a XUV output coupler; (b)close-up photograph of aperture in the mirror surface[51].

    图 8  飞秒共振增强腔中的非共线高次谐波产生

    Fig. 8.  Non-collinear high harmonic generation in femtosecond enhancement cavity

    图 9  fsEC腔内高次谐波产生实验装置[43]

    Fig. 9.  Schematic setup of high-harmonic generation in fsEC[43]

    图 10  OPCPA系统驱动XUV飞秒光学频率梳产生[9]

    Fig. 10.  XUV femtosecond optical frequency comb generation drived by OPCPA system[9]

    图 11  薄片振荡器内产生高次谐波实验装置[82]

    Fig. 11.  Experimental setup of HHG in a thin-disk laser oscillator[82]

  • [1]

    Eckstein J N, Ferguson A I, Hänsch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [2]

    Baird K M, Evenson K M, Hanes G R, Jennings D A, Petersen F R 1979 Opt. Lett. 4 263Google Scholar

    [3]

    Layer H P, Rowley W R C, Marx B R 1981 Opt. Lett. 6 188Google Scholar

    [4]

    Pollock C R, Jennings D A, Petersen F R, Wells J S, Drullinger R E, Beaty E C, Evenson K M 1983 Opt. Lett. 8 133Google Scholar

    [5]

    Jennings D A, Pollock C R, Petersen F R, Drullinger R E, Evenson K M, Wells J S, Hall J L, Layer H P 1983 Opt. Lett. 8 136Google Scholar

    [6]

    Ma L, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers S, Oates C W, Hollberg L, Diddams S A 2004 Science 303 1843Google Scholar

    [7]

    Merkt F, Softley T P 1992 Chem. Phys. 96 4149

    [8]

    Herrmann M, Haas M D, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knunz S, Kolachevsky N, Schussler H A, Hänsch T W, Udem T 2009 Phys. Rev. A. 79 052505Google Scholar

    [9]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S E 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [10]

    Eyler E E, Chieda D E, Stowe M C, Thorpe M J, Rschibi T R, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [11]

    Peik E, Tamm C 2003 Europhys. Lett. 61 181Google Scholar

    [12]

    Rellergert W G, Demille D, Greco R, Hehlen M P, Torgerson, J R, Hudson E R 2010 Phys. Rev. Lett. 104 200802Google Scholar

    [13]

    Campbell C J, Radnaev A G, Kuzmich A 2011 Phys. Rev. Lett. 106 223001Google Scholar

    [14]

    Murphy M T, Webb J K, Flambaum V V 2003 Mon. Not. R. Astron. Soc. 345 609Google Scholar

    [15]

    Berengut J C, Dzuba V A, Flambaum V V, Ong A 2011 Phys. Rev. Lett. 106 210802Google Scholar

    [16]

    Mcpherson A, Gibson G N, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B. 4 595Google Scholar

    [17]

    Ferray M, Lhuillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B-AT Mol. Opt. 21 L31Google Scholar

    [18]

    Lhuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [19]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766Google Scholar

    [20]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [21]

    Popmintchev T, Chen M, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A L, Hernandezgarcia C, Plaja L, Becker A, Jaronbecker A, Mumane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [22]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [23]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [24]

    Ross I N, Matousek P, Towrie M, Langley A J, Collier J L 1997 Opt. Commun. 144 125Google Scholar

    [25]

    Mears R J, Reekie L, Poole S B, Payne D N 1985 Electron. Lett. 21 738Google Scholar

    [26]

    Mears R J, Reekie L, Poole S B, Payne D N 1986 Electron. Lett. 22 159Google Scholar

    [27]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Optical Fiber Communication Conference Reno, United States, 19 January, 1987 pWI2

    [28]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Electron. Lett. 23 1026Google Scholar

    [29]

    Desurvire E, Simpson J R, Becker P C 1987 Opt. Lett. 12 888Google Scholar

    [30]

    Snitzer E, Po H, Hakimi F, Tumminelli R P, Mccollum B C 1988 Optical Fiber Sensors New Orleans, United States, 27 January, 1988 pPD5

    [31]

    Po H, Snitzer E, Tumminelli R P, Zenteno L, Hakimi F, Cho N M, Haw T 1989 Optical Fiber Communication Conference Houston, United States, 6 February, 1989 pPD7

    [32]

    Jones R J, Ye J 2002 Opt. Lett. 27 1848Google Scholar

    [33]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [34]

    Zimmermann C, Vuletic V, Hemmerich A, Hänsch T W 1995 Appl. Phys. Lett. 66 2318Google Scholar

    [35]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B. 24 576Google Scholar

    [36]

    Jones R J, Ye J 2004 Opt. Lett. 29 2812Google Scholar

    [37]

    Jones R J, Thomann I, Ye J 2004 Phys. Rev. A. 69 051803Google Scholar

    [38]

    Devoe R G, Fabre C, Jungmann K, Hoffnagle J A, Brewer R G 1988 Phys. Rev. A. 37 1802Google Scholar

    [39]

    Moll K D, Jones R J, Ye J 2005 Opt. Express 13 1672Google Scholar

    [40]

    韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206Google Scholar

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206Google Scholar

    [41]

    Pupeza I, Fill E E, Krausz F 2011 Opt. Express 19 12108Google Scholar

    [42]

    Mills A K, Hammond T J, Lam M H, Jones D J 2012 J. Phys. B 45 142001Google Scholar

    [43]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [44]

    Gohle C, Udem T, Rauschenberger J, Holzwarth R, Herrmann M G, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [45]

    Lee J, Carlson D R, Jones R J 2011 Opt. Express 19 23315Google Scholar

    [46]

    Yost D C, Schibli T R, Ye J 2008 Opt. Lett. 33 1099Google Scholar

    [47]

    Yost D C, Cingoz A, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2011 Opt. Express 19 23483Google Scholar

    [48]

    Yang Y, Susmann F, Zherebtsov S, Pupeza I, Kaster J, Lehr D, Fuchs H J, Kley E, Fill EE, Duan X, Zhao Z S, Krausz F, Stebbings S L, Kling, M. F 2011 Opt. Express 19 1954Google Scholar

    [49]

    Moll K D, Jones R J, Ye J 2006 Opt. Express 14 8189Google Scholar

    [50]

    Weitenberg J, Rusbuldt P, Eidam T, Pupeza I 2011 Opt. Express 19 9551Google Scholar

    [51]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbueldt P, Rauschenberger J, Limpert J, Udem T, Tuennermann A, Hänsch T W, Apolonskiy A, Krausz F, Fi ll, E. E 2013 Nat. Photonics 7 608Google Scholar

    [52]

    Paschotta, R 2006 Opt. Express 14 6069Google Scholar

    [53]

    Lhuillier A, Balcou P, Candel S, Schafer K J, Kulander K C 1992 Phys. Rev. A. 46 2778Google Scholar

    [54]

    Wu J, Zeng H 2007 Opt. Lett. 32 3315Google Scholar

    [55]

    Ozawa A, Vernaleken A, Schneider W, Gotlibovych I, Udem T, Hänsch T W 2008 Opt. Express 16 6233Google Scholar

    [56]

    Fomichev S V, Breger P, Carre B, Agostini P, Zaretsky D F 2002 Laser Phys. 12 383

    [57]

    Ozawa A, Vernaleken A, Gotlibovych I, Hommelhoff P, Udem T, Hänsch T W 2010 Proceedings of Spie the International Society for Optical Engineering Brussels, Belgium, 4 June, 2010 p7728

    [58]

    Allison T K, Cingoz A, Yost D C, Ye J 2011 Phys. Rev. Lett. 107 183903Google Scholar

    [59]

    Carlson D R, Lee J, Mongelli J, Wright E M, Jones R J 2011 Opt. Lett. 36 2991Google Scholar

    [60]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015Google Scholar

    [61]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tunnermann A 2010 Opt. Lett. 35 94Google Scholar

    [62]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [63]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [64]

    Pupeza I, Eidam T, Rauschenberger J, Bernhardt B, Ozawa A, Fill E E, Apolonski A, Udem T, Limpert J, Alahmed Z A, Azzeer A M, Tunnermann A, Hänsch T W, Krausz, F 2010 Opt. Lett. 35 2052Google Scholar

    [65]

    Hao Q, Li W X, Zeng H P 2009 Opt. Express 17 5815Google Scholar

    [66]

    Bernhardt B, Ozawa A, Pupeza I, Vernaleken A, Kobayashi Y, Holzwarth R, Fill E E, Krausz F, Hänsch T W, Udem T 2011 Quantum Electronics and Laser Science Conference Baltimore, United States, 1–6 May, 2011 pQTuF3

    [67]

    Ditmire T, Crane J K, Nguyen H, Dasilva L B, Perry 1995 Phys. Rev. A. 51 R902Google Scholar

    [68]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [69]

    Pupeza I, Holzberger S, Eidam T, Esser D, Weitenberg J, Carstens H, Rusbuldt P, Limpert J, Udem T, Tunnermann A, Hänsch T W, Krausz F, Fill E E 2013 The European Physical Journal Conferences, Brussels, Belgium, 4 June, 2013 p10023

    [70]

    Carstens H, Högner M, Saule T, Holzberger S, Lilienfein N, Guggenmos A, Jocher C, Eidam T, Esser D, Tosa V, Pervak V, Limpert J, Tunnermann A, Krausz F, Pupeza I 2016 Optica 3 366Google Scholar

    [71]

    Jocher C, Eidam T, Hadrich S, Limpert J, Tunnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [72]

    Porat G, Heyl C, Schoun S B, Benko C, Dorre N, Corwin K L, Ye J 2017 Nat. Photonics 12 387

    [73]

    Drake G W, Yan Z C 2008 Can. J. Phys. 86 45Google Scholar

    [74]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [75]

    Pálffy A 2010 Contemp. Phys. 51 471Google Scholar

    [76]

    Ubachs W, Salumbides E J, Eikema K S, Oliveira N D, Nahon L 2014 Electron. Spectrosc. Relat. Phenom. 196 159Google Scholar

    [77]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [78]

    Zhang C, Schoun S B, Heyl C, Porat G, Gaarde M B, Ye J 2020 Phys. Rev. Lett. 125 093902

    [79]

    Pinkert T J, Kandula D Z, Gohle C, Barmes I, Morgenweg J, Eikema K S 2011 Opt. Lett. 36 2026Google Scholar

    [80]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar

    [81]

    Emaury F, Diebold A, Saraceno C J, Keller U 2015 Optica 2 980Google Scholar

    [82]

    Labaye F, Gaponenko M S, Wittwer V J, Diebold A, Paradis C, Modsching N, Merceron L, Emaury F, Graumann I J, Phillips C R, Saraceno C J, Krankel C, Keller U, Sudmeyer T 2017 Opt. Lett. 42 5170Google Scholar

    [83]

    Yu Z J, Han H N, Xie Y, Peng Y N, Xu X D, Wei Z Y 2016 Opt. Express 24 3103Google Scholar

    [84]

    Tian W L, Yu C, Zhu J F, Zhang D C, Wei Z Y, Xu X D, Xu J 2019 Opt. Express 27 21448Google Scholar

    [85]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [86]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] 李卫艳, 刘娜, 王赏. 拉伸到大核间距的分子离子谐波辐射谱上复杂干涉结构的物理起源. 物理学报, 2023, 72(8): 083101. doi: 10.7498/aps.72.20222410
    [3] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] 汪洋, 刘煜, 吴成印. 固体高次谐波产生、调控及应用. 物理学报, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [6] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [7] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [8] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [9] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [11] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [12] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [13] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [14] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [15] 韩海年, 张金伟, 张青, 张龙, 魏志义. 飞秒激光共振增强腔的理论与实验研究. 物理学报, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [16] 葛愉成. 高次谐波辐射发射特性研究. 物理学报, 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [17] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究. 物理学报, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [18] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [19] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [20] 王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕. 帽层对极紫外多层膜反射特性影响分析. 物理学报, 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
计量
  • 文章访问数:  10558
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 修回日期:  2020-06-29
  • 上网日期:  2020-11-07
  • 刊出日期:  2020-11-20

/

返回文章
返回