搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒脉冲非对称互相关绝对测距

彭博 曲兴华 张福民 张天宇 张铁犁 刘晓旭 谢阳

引用本文:
Citation:

飞秒脉冲非对称互相关绝对测距

彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳

Absolute distance measurement based on asymmetric cross-correlation of femtosecond pulse

Peng Bo, Qu Xing-Hua, Zhang Fu-Min, Zhang Tian-Yu, Zhang Tie-Li, Liu Xiao-Xu, Xie Yang
PDF
导出引用
  • 光学频率梳是一种重复频率与偏置频率锁定的新型光源,在频域上为频率间隔稳定的频率梳齿,在时域上为相对距离稳定的飞秒脉冲激光.光学频率梳在测距中的应用广泛,能够实现远距离高精度的测量.本实验使用飞秒激光脉冲作为光源,基于谐振腔扫描光学采样测距原理得到非对称的互相关干涉条纹,实现了远距离高精度的绝对测距.非对称互相关条纹可通过色散补偿与调节光学频率梳的重复频率得到,并通过得到的非对称的互相关干涉条纹对测距结果进行补偿.实验结果表明测距系统能够实现在50 m范围内误差为2 μm的绝对测距,测量相对误差为1.9×10-7.
    Optical frequency comb is a kind of new pulse source, whose repetition rate and phase are locked. Optical frequency comb plays an important role in absolute distance measurement and time-frequency metrology. Lots of laser ranging methods such as time-of-flight and multi-heterodyne interferometry based on femtosecond laser pulse have been used in distance measurement. In this paper, a high-precision distance measurement system based on optical sampling by cavity tuning is set up to realize a long absolute distance measurement. And a kind of error compensation method is proposed based on the asymmetric cross-correlation patterns. In traditional optical sampling by cavity tuning measurement system, the fiber link is inserted into the reference path to extend the non-ambiguity distance, which does not have a good performance in arbitrary distance measurement. In our system, we use a 116-meter-long fiber which is inserted into the measuring path to extend the non-ambiguity distance. Besides, dispersion compensation technique is used to control the shape of the laser pulse. An asymmetric optical pulse is used as the light source, so that we can obtain extremely asymmetric cross-correlation patterns. The cross-correlation patterns can be acquired by sweeping the repetition frequency. We use an arbitrary waveform generator to provide the scanning voltage, and the scanning voltage can adjust the repetition rate of the pulse and has a frequency of 1 Hz. There will be two peaks on the envelope of cross-correlation pattern, and both peaks can be used to obtain the distance information. When the laser propagates in vacuum and the system is stabilized, the distance between these two peaks is constant, and we can use this distance to obtain the important factor N, which is used to describe the number of the pulse. As a result, we can realize absolute distance measurement without the help of other measurement systems. However, due to the dispersion of the medium, the distance between these two peaks is not constant, which means that the asymmetry of the cross-correlation patterns in dispersion medium will influence the measurement results. And the deviation is relevant to the peak-to-peak distance. We use the difference among the peak-to-peak distances at different positions to correct the measurement results. A comparison of our results with those from a commercial He-Ne laser interferometer shows that they are in agreement within 2 μm over 50 m distance, corresponding to a relative precision of 1.9×10-7.
      通信作者: 张福民, zhangfumin@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51675380)和航天一院高校联合创新基金资助的课题.
      Corresponding author: Zhang Fu-Min, zhangfumin@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675380) and the China Academy of Launch Vehicle Technology Foundation.
    [1]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [2]

    Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 1 (in Chinese)[吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 1]

    [3]

    Zhou W H, Shi J K, Ji R Y, Li Y, Liu Y 2017 J. Sci. Instrum. 38 1859 (in Chinese)[周维虎, 石俊凯, 纪荣祎, 黎尧, 刘娅 2017 仪器仪表学报 38 1859]

    [4]

    Jang Y S, Lee K, Han s, Lee J, Kim Y J, Kim S W 2014 Opt. Eng. 53 122403

    [5]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095

    [6]

    Jin J, Kim Y J, Kim Y, Kim S W, Kang C S 2006 Opt. Express 14 5968

    [7]

    Zhao X, Qu X, Zhang F, Zhao Y, Tang G 2018 Opt. Lett. 43 807

    [8]

    Cui M, Zeitouny M G, Bhattacharya N, Sa V D B, Urbach H P 2011 Opt. Express 19 6549

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954

    [10]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 207

    [11]

    Ye J 2004 Opt. Lett. 29 1153

    [12]

    Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613

    [13]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese)[吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [14]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351

    [15]

    Cui P, Yang L, Guo Y, Lin J, Liu Y, Zhu J 2018 IEEE Photon. Technol. Lett. 30 744

    [16]

    Wu H, Zhang F, Liu T, Balling P, Li J, Qu X 2016 Opt. Lett. 41 2366

    [17]

    Nakajima Y, Minoshima K 2015 Opt. Express 23 25979

    [18]

    Zeitouny M G, Cui M, Bhattacharya N, Urbach H P, van den Berg S A, Janssen A J E M 2010 Phys. Rev. A 82 023808

    [19]

    Wang G C, Yan S H, Yang J, Lin C B, Wei C H, Du Z G 2015 Acta Opt. Sin. 35 167 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 魏春华, 杜志广 2015 光学学报 35 167]

    [20]

    Birch K P, Downs M J 1993 Metrologia 30 155

  • [1]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [2]

    Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 1 (in Chinese)[吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 1]

    [3]

    Zhou W H, Shi J K, Ji R Y, Li Y, Liu Y 2017 J. Sci. Instrum. 38 1859 (in Chinese)[周维虎, 石俊凯, 纪荣祎, 黎尧, 刘娅 2017 仪器仪表学报 38 1859]

    [4]

    Jang Y S, Lee K, Han s, Lee J, Kim Y J, Kim S W 2014 Opt. Eng. 53 122403

    [5]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095

    [6]

    Jin J, Kim Y J, Kim Y, Kim S W, Kang C S 2006 Opt. Express 14 5968

    [7]

    Zhao X, Qu X, Zhang F, Zhao Y, Tang G 2018 Opt. Lett. 43 807

    [8]

    Cui M, Zeitouny M G, Bhattacharya N, Sa V D B, Urbach H P 2011 Opt. Express 19 6549

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954

    [10]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 207

    [11]

    Ye J 2004 Opt. Lett. 29 1153

    [12]

    Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613

    [13]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese)[吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [14]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351

    [15]

    Cui P, Yang L, Guo Y, Lin J, Liu Y, Zhu J 2018 IEEE Photon. Technol. Lett. 30 744

    [16]

    Wu H, Zhang F, Liu T, Balling P, Li J, Qu X 2016 Opt. Lett. 41 2366

    [17]

    Nakajima Y, Minoshima K 2015 Opt. Express 23 25979

    [18]

    Zeitouny M G, Cui M, Bhattacharya N, Urbach H P, van den Berg S A, Janssen A J E M 2010 Phys. Rev. A 82 023808

    [19]

    Wang G C, Yan S H, Yang J, Lin C B, Wei C H, Du Z G 2015 Acta Opt. Sin. 35 167 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 魏春华, 杜志广 2015 光学学报 35 167]

    [20]

    Birch K P, Downs M J 1993 Metrologia 30 155

  • [1] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220147
    [2] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [3] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [5] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [6] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [7] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [8] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [9] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [10] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [11] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [12] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [13] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [14] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [15] 邢书剑, 张福民, 曹士英, 王高文, 曲兴华. 飞秒光频梳的任意长绝对测距. 物理学报, 2013, 62(17): 170603. doi: 10.7498/aps.62.170603
    [16] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [17] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [18] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [19] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [20] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算. 物理学报, 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
计量
  • 文章访问数:  3416
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2018-07-28
  • 刊出日期:  2018-11-05

飞秒脉冲非对称互相关绝对测距

  • 1. 天津大学, 精密测试技术及仪器国家重点实验室, 天津 300072;
  • 2. 北京航天计量测试技术研究所, 北京 100076
  • 通信作者: 张福民, zhangfumin@tju.edu.cn
    基金项目: 国家自然科学基金(批准号:51675380)和航天一院高校联合创新基金资助的课题.

摘要: 光学频率梳是一种重复频率与偏置频率锁定的新型光源,在频域上为频率间隔稳定的频率梳齿,在时域上为相对距离稳定的飞秒脉冲激光.光学频率梳在测距中的应用广泛,能够实现远距离高精度的测量.本实验使用飞秒激光脉冲作为光源,基于谐振腔扫描光学采样测距原理得到非对称的互相关干涉条纹,实现了远距离高精度的绝对测距.非对称互相关条纹可通过色散补偿与调节光学频率梳的重复频率得到,并通过得到的非对称的互相关干涉条纹对测距结果进行补偿.实验结果表明测距系统能够实现在50 m范围内误差为2 μm的绝对测距,测量相对误差为1.9×10-7.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回