搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极位置和截面尺寸对分子器件输运性质的调控

樊帅伟 王日高

引用本文:
Citation:

电极位置和截面尺寸对分子器件输运性质的调控

樊帅伟, 王日高

Effect of electrode position and cross section size on transport properties of molecular devices

Fan Shuai-Wei, Wang Ri-Gao
PDF
导出引用
  • 研究表明分子器件的性能受器件结构搭建精度影响,分子与电极接触构型的微弱变化可能引起电输运特性较大差异.本文运用密度泛函理论和非平衡格林函数相结合的方法,研究了由金纳米线与benzene-1,4-dithiol(BDT)形成的分子结的电输运性质.通过对不同的Au-BDT接触构型输运性质的研究,发现当两电极处于对位构型时,有较好的电荷输运行为,而且比较符合制备工艺要求;当电极偏离轴线的角度不大于5°,且电极散射截面尺寸不小于4×4时,该分子结体系的电导和透射谱均比较稳定.电极截面尺寸小于4×4或者电极偏离轴线的夹角大于5°时,透射谱在费米能级附近出现不连续现象,导致体系电导降低.较小电极截面尺寸或者电极以较大角度偏离轴线将导致该分子结体系电导降低和透射谱连续性降低,主要是组成电极的金原子轨道与苯基分子轨道耦合缺失造成的.该研究为Au-BDT-Au体系设计和制备过程中电极的位置及电极截面尺寸做了科学的界定.
    Many investigations indicate that molecular electronics opens up possibilities for continually miniaturizing the electronic devices beyond the limits of the standard silicon-based technologies. There have been significant experimental and theoretical efforts to build molecular junctions and to study their transport properties. The electron transport in molecular device shows clearly quantum effect, and the transport property for molecular device would be strongly affected by chemical and structural details, including the contact position and method between molecule and electrodes, the angle between two electrodes connecting to the molecule. Till now, the micro-fabrication technology still does not guarantee metal electrodes contacting the molecules surfaces ideally. During molecular device fabrication, any tiny variations for the contact configuration usually exist in the molecular device, which would change the device transport property. Hence, it is necessary to investigate the effects of electrode position and electrode cross section size on the transport property.We take Au-benzene-1, 4-dithiol (BDT)-Au (Au-BDT-Au) molecular junctions as example, and systematically calculate its transport properties with various contact positions, and several electrode cross section sizes. The contact face for Au electrode is set to be the (001) face. In the calculations, the density functional theory combined with the Keldysh non-equilibrium Green's function formalism is utilized. The local density approximation is selected as an exchange correlation potential, and atomic core is determined by the standard norm conserving nonlocal pseudo-potential.Our investigations show that the relative position between the electrodes plays a crucial role in the transport behavior of Au-BDT-Au device. When both electrodes are set to be at the counter-position, the preferable transport behavior could be found. The counter-position indicates that the two electrodes are on the same line, which is beneficial to the fabrication. As the angle, which is defined as the angle of electrode deviating from the axis, is larger than five degrees, the transport behavior deteriorates. Hence, the angle for the electrode deviating from its axis should be less than five degrees. To study the effect of electrode cross section size, we calculate the transport properties for three electrode cross sections, i.e. 3×4, 4×4 and 5×4 supercell. Our calculations indicate that when electrode cross section is less than 4×4, the transmission, near the Fermi level, is discontinuous, which would deteriorate the transport performance. Hence, the section size of electrode should not be less than 4×4. This research will provide a scientific index for the electrode position and its cross section size during the fabrication.
      通信作者: 樊帅伟, phyfsw@ctgu.edu.cn
    • 基金项目: 湖北省自然科学基金(批准号:2017CFB527)和鸿之微研究生学术研究资助计划(批准号:hzwtech-PROP)资助的课题.
      Corresponding author: Fan Shuai-Wei, phyfsw@ctgu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. 2017CFB527) and the Postgraduate Research Opportunities Program of Hongzhiwei Technology (Shanghai) Co., Ltd. (Grant No. hzwtech-PROP).
    [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [2]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [3]

    Huang J, Li Q X, Yang J L 2016 Sci. Sin. Chim. 46 12 (in Chinese)[黄静, 李群祥, 杨金龙 2016 中国科学: 化学 46 12]

    [4]

    Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L, Ralph D C 2002 Nature 417 722

    [5]

    Nitzan A, Ratner M A 2003 Science 300 1384

    [6]

    Beebe J M, Kim B, Gadzuk J W, Frisbie C D, Kushmerick J G 2006 Phys. Rev. Lett. 97 026801

    [7]

    Chen L, Hu Z, Zhao A, Wang B, Luo Y, Yang J, Hou J G 2007 Phys. Rev. Lett. 99 146803

    [8]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [9]

    Dubi Y, di Ventra M 2011 Rev. Mod. Phys. 83 131

    [10]

    Ho G, Heath J R, Kondratenko M, Perepichka D F, Arseneault K, Pezolet M, Bryce M R 2006 Chem. Eur. J. 11 2914

    [11]

    Mujica V, Kemp M, Ratner M A 1994 J. Chem. Phys. 101 6856

    [12]

    Lang N D 1995 Phys. Rev. B 52 5335

    [13]

    Havu P, Havu V, Puska M J, Nieminen R M 2004 Phys. Rev. B 69 115325

    [14]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [15]

    Mads B, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [16]

    Xia C J, Fang C F, Hu G C, Zhao P, Wang Y M, Xie S J, Liu D S 2008 Chin. Phys. Lett. 25 1840

    [17]

    Zhu L, Yao K L, Liu Z L 2009 J. Chem. Phys. 131 204702

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [19]

    Li X F, Chen K Q, Wang L L, Long M Q, Zou B S, Shuai Z 2007 Appl. Phys. Lett. 91 133511

    [20]

    Ren H, Liang W, Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 077301

    [21]

    Fu X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [22]

    Zeng J, Chen K Q 2014 Appl. Phys. Lett. 104 033104

    [23]

    Jiang B, Zhou Y H, Chen C Y, Chen K Q 2015 Org. Electron. 23 133

    [24]

    Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese)[李永辉, 闫强, 周丽萍, 韩琴 2015 物理学报 64 057301]

    [25]

    Han J, Feng Y, Yao K, Gao G Y 2017 Appl. Phys. Lett. 111 132402

    [26]

    Kuang G W, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570

    [27]

    Feng Y, Wu X, Han J, Gao G Y 2018 J. Mater. Chem. C 6 4087

    [28]

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501 (in Chinese)[崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 物理学报 67 118501]

    [29]

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501 (in Chinese)[俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501]

    [30]

    Huang P, Tong G P 2011 J. Zhejiang Normal Univ. (Nat. Sci.) 34 292 (in Chinese)[黄埔, 童国平 2011 浙江师范大学学报(自然科学版) 34 292]

    [31]

    Chen H 2007 Physics 36 910 (in Chinese)[陈灏 2007 物理 36 910]

    [32]

    di Ventra M, Pantelides S T, Lang N D 2000 Phys. Rev. Lett. 84 979

    [33]

    Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin. 54 1341 (in Chinese)[邹斌, 李宗良, 王传奎, 薛其坤 2005 物理学报 54 1341]

    [34]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin. 53 1490 (in Chinese)[李宗良, 王传奎, 罗毅, 薛其坤 2004 物理学报 53 1490]

    [35]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese)[夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 物理学报 56 4884]

    [36]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [37]

    Cui B, Zhao W, Wang H, Zhao J, Zhao H, Li D, Jiang X, Zhao P, Liu D S 2014 J. Appl. Phys. 116 073701

    [38]

    Vosko S H, Wilk L, Nusair M 1980 Can. J. Phys. 58 1200

  • [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [2]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [3]

    Huang J, Li Q X, Yang J L 2016 Sci. Sin. Chim. 46 12 (in Chinese)[黄静, 李群祥, 杨金龙 2016 中国科学: 化学 46 12]

    [4]

    Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L, Ralph D C 2002 Nature 417 722

    [5]

    Nitzan A, Ratner M A 2003 Science 300 1384

    [6]

    Beebe J M, Kim B, Gadzuk J W, Frisbie C D, Kushmerick J G 2006 Phys. Rev. Lett. 97 026801

    [7]

    Chen L, Hu Z, Zhao A, Wang B, Luo Y, Yang J, Hou J G 2007 Phys. Rev. Lett. 99 146803

    [8]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [9]

    Dubi Y, di Ventra M 2011 Rev. Mod. Phys. 83 131

    [10]

    Ho G, Heath J R, Kondratenko M, Perepichka D F, Arseneault K, Pezolet M, Bryce M R 2006 Chem. Eur. J. 11 2914

    [11]

    Mujica V, Kemp M, Ratner M A 1994 J. Chem. Phys. 101 6856

    [12]

    Lang N D 1995 Phys. Rev. B 52 5335

    [13]

    Havu P, Havu V, Puska M J, Nieminen R M 2004 Phys. Rev. B 69 115325

    [14]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [15]

    Mads B, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [16]

    Xia C J, Fang C F, Hu G C, Zhao P, Wang Y M, Xie S J, Liu D S 2008 Chin. Phys. Lett. 25 1840

    [17]

    Zhu L, Yao K L, Liu Z L 2009 J. Chem. Phys. 131 204702

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [19]

    Li X F, Chen K Q, Wang L L, Long M Q, Zou B S, Shuai Z 2007 Appl. Phys. Lett. 91 133511

    [20]

    Ren H, Liang W, Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 077301

    [21]

    Fu X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [22]

    Zeng J, Chen K Q 2014 Appl. Phys. Lett. 104 033104

    [23]

    Jiang B, Zhou Y H, Chen C Y, Chen K Q 2015 Org. Electron. 23 133

    [24]

    Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese)[李永辉, 闫强, 周丽萍, 韩琴 2015 物理学报 64 057301]

    [25]

    Han J, Feng Y, Yao K, Gao G Y 2017 Appl. Phys. Lett. 111 132402

    [26]

    Kuang G W, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570

    [27]

    Feng Y, Wu X, Han J, Gao G Y 2018 J. Mater. Chem. C 6 4087

    [28]

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501 (in Chinese)[崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 物理学报 67 118501]

    [29]

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501 (in Chinese)[俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501]

    [30]

    Huang P, Tong G P 2011 J. Zhejiang Normal Univ. (Nat. Sci.) 34 292 (in Chinese)[黄埔, 童国平 2011 浙江师范大学学报(自然科学版) 34 292]

    [31]

    Chen H 2007 Physics 36 910 (in Chinese)[陈灏 2007 物理 36 910]

    [32]

    di Ventra M, Pantelides S T, Lang N D 2000 Phys. Rev. Lett. 84 979

    [33]

    Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin. 54 1341 (in Chinese)[邹斌, 李宗良, 王传奎, 薛其坤 2005 物理学报 54 1341]

    [34]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin. 53 1490 (in Chinese)[李宗良, 王传奎, 罗毅, 薛其坤 2004 物理学报 53 1490]

    [35]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese)[夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 物理学报 56 4884]

    [36]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [37]

    Cui B, Zhao W, Wang H, Zhao J, Zhao H, Li D, Jiang X, Zhao P, Liu D S 2014 J. Appl. Phys. 116 073701

    [38]

    Vosko S H, Wilk L, Nusair M 1980 Can. J. Phys. 58 1200

  • [1] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [2] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [3] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [4] 李永辉, 闫强, 周丽萍, 韩琴. 金纳米线接触构型相关的双重负微分电阻与整流效应. 物理学报, 2015, 64(5): 057301. doi: 10.7498/aps.64.057301
    [5] 陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁. 对称双缺陷光子晶体的可调谐滤波特性分析. 物理学报, 2014, 63(15): 154207. doi: 10.7498/aps.63.154207
    [6] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [7] 吴婧, 王鸣. 胶体晶体微结构光纤传输特性研究. 物理学报, 2012, 61(6): 064215. doi: 10.7498/aps.61.064215
    [8] 戴满媛, 聂义友, 桑明煌, 王贤平, 殷澄, 曹庄琪. 零势场中变质量粒子的束缚能谱. 物理学报, 2010, 59(11): 7586-7590. doi: 10.7498/aps.59.7586
    [9] 何济洲, 贺兵香. 考虑透射概率的能量选择性电子热泵. 物理学报, 2010, 59(4): 2345-2349. doi: 10.7498/aps.59.2345
    [10] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算. 物理学报, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [11] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [12] 王 剑, 谷渝秋, 蔡达峰, 焦春晔, 吴玉迟, 何颖玲, 滕 建, 杨向东, 王 磊, 赵宗清. 激光尾波场中光子加速研究. 物理学报, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [13] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究. 物理学报, 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [14] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [15] 周艳红, 许 英, 郑小宏. 水分子对碳链的输运性质影响的第一性原理研究. 物理学报, 2007, 56(2): 1093-1098. doi: 10.7498/aps.56.1093
    [16] 周健华, 周圣明, 黄涛华, 林 辉, 李抒智, 邹 军, 王 军, 张 荣. γ-LiAlO2上非极性ZnO薄膜制备及其光谱性质研究. 物理学报, 2007, 56(7): 4044-4048. doi: 10.7498/aps.56.4044
    [17] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 物理学报, 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [18] 杜桂强, 刘念华. 具有镜像对称结构的一维光子晶体的透射谱. 物理学报, 2004, 53(4): 1095-1098. doi: 10.7498/aps.53.1095
    [19] 张进城, 郝跃, 李培咸, 范隆, 冯倩. 基于透射谱的GaN薄膜厚度测量. 物理学报, 2004, 53(4): 1243-1246. doi: 10.7498/aps.53.1243
    [20] 耿 华, 姚江宏, 李文润, 张光寅, 阮永丰. 近化学计量组分掺铒铌酸锂晶体光学特性研究. 物理学报, 2003, 52(6): 1549-1553. doi: 10.7498/aps.52.1549
计量
  • 文章访问数:  6084
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 修回日期:  2018-08-25
  • 刊出日期:  2018-11-05

/

返回文章
返回