搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外差分光学吸收光谱技术测量环境大气中的水汽

孙友文 刘文清 谢品华 陈嘉乐 曾议 徐晋 李昂 司福祺 李先欣

引用本文:
Citation:

红外差分光学吸收光谱技术测量环境大气中的水汽

孙友文, 刘文清, 谢品华, 陈嘉乐, 曾议, 徐晋, 李昂, 司福祺, 李先欣

Measurement of atmospheric water vapor using infrared differential optical absorption spectroscopy

Sun You-Wen, Liu Wen-Qing, Xie Pin-Hua, Chan Ka-Lok, Zeng Yi, Xu Jin, Li Ang, Si Fu-Qi, Li Xian-Xin
PDF
导出引用
  • 研究了基于红外差分光学吸收光谱技术的环境大气中的水汽测量方法. 所用实验装置由自制的非分散红外多组分气体分析仪改装而成, 根据HITRAN数据库提供的线强参数,采用Voigt展宽线型和方法,并考虑温度、 气压及仪器函数的影响,计算出了水汽反演波段的有效吸收截面. 将反演的水汽浓度与非分散红外分析仪的测量结果进行了实时对比, 得到了较好的测量一致性,测量相关系数为0.93347. 为今后采用红外DOAS技术测量其他在紫外可见波段无吸收或仅有弱吸收的气体 (如CO2, CH4, CO, N2O等)提供了可借鉴的解决方案.
    In this paper, we present a method of measuring atmospheric water vapor concentration by using infrared differential optical absorption spectroscopy (DOAS). The experimental setup is converted from a self-made non-dispersive infrared multi-gas analyzer. In the process of DOAS retrieval, the reference absorption cross section is calculated by applying the Voigt broadening method to the absorption lines from HITRAN database. The influences of temperature, pressure and instrument function are also taken into account in the calculation. A validation study of the water vapor measurement is performed by comparing the results measured by a non-dispersive infrared analyzer. The results show good agreement with each other (correlation coefficient = 0.93347). It indicates that the infrared DOAS technique has the potential applications to other gases measurements which have no or weak absorption within the UV region, e.g. CO2, CH4, CO, N2O, etc.
    • 基金项目: 国家高技术研究发展计划(批准号: 2009AA063006)、国家自然科学基金(批准号: 40805015) 和安徽省优秀青年科技基金(批准号: 10040606Y28)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA063006), the National Natural Science Foundation of China (Grant No. 40805015), and the Excellent Youth Scientific Foundation of Anhui, China (Grant No. 10040606Y28).
    [1]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716

    [2]

    Gary K 2002 Spectrochimica Acta Part A 58 2373

    [3]

    Ehret G, Kiemle C, Renger W, Simmet G 1993 Appl. Opt. 32 24

    [4]

    Syed I, Edward V B 1989 Appl. Opt. 28 3603

    [5]

    Heusinkveld B G, Adrie F G J, Albert A M H 2008 Agricultural and Forest Meteorology 148 1563

    [6]

    Arroyo M P, Hanson R K 1993 Appl. Opt. 32 6104

    [7]

    Fix A, Ehret G, Löhring J, Hoffmann D, Alpers M 2010 Appl. Phys. B, DOI: 10.1007/s 00340-010-4310-5

    [8]

    Schneider M, Romero P M, Hase F, Blumenstock T, Cuevas E, Ramos R 2010 Atmos. Meas. Tech. 3 323

    [9]

    Greenblatt G, Orlando J, Burkholder J, Ravishankara A 1990 J. Geophys. Res. 95 18577

    [10]

    Solomon S, Portmann R W, Sanders R W, Daniel J S, Madsen W, Bartram B, Dutton E G 1999 J. Geophys. Res. 104 12047

    [11]

    Lee D S, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo K L, Olivier J G J, Dentener F J, Bouwman A 1997 Atmos. Environ. 31 1735

    [12]

    Platt U, Perner D, Patz H 1979 J. Geophys. Res. 84 6329

    [13]

    Si F Q, Xie P H, Dou K, Zhan K, Liu Y, Xu J, Liu W Q 2010 Acta Phys. Sin. 59 2867 (in Chinese) [司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清 2010 物理学报 59 2867]

    [14]

    Buchwitz M, Rozanov V V, Burrows J P 2000 J. Geophys. Res. 105 15231

    [15]

    Gerilowski K, Tretner A, Krings T, Buchwitz M, Bertagnolio P P, Belemezov F, Erzinger J, Burrows J P, Bovensmann H 2011 Atmos. Meas. Tech. 4 215

    [16]

    Krings T, Gerilowski K, Buchwitz M, Reuter M, Tretner A, Erzinger J, Heinze D, Burrows J P, Bovensmann H 2011 Atmos. Meas. Tech. 4 2207

    [17]

    Hao N, Zhou B, Chen L M 2006 Acta Phys. Sin. 55 1529 (in Chinese) [郝楠, 周斌, 陈立民 2006 物理学报 55 1529]

    [18]

    Sun Y W, Liu W Q, Wang S M, Huang S H 2011 Spectroscopy and Spectral Analysis 10 31 (in Chinese) [孙友文, 刘文清, 汪世美, 黄书华 2011 光谱学与光谱分析 10 31]

    [19]

    Sun Y W, Liu W Q, Zeng Y, Wang S M, Huang S H 2011 Chin. Phys. Lett. 28 28

    [20]

    Sun Y W, Liu W Q, Wang S M, Huang S H, Yu X M 2011 Chin. Opt. Lett. 3 9

    [21]

    Rothman L S, Jaquemart D, Barbe A 2005 Journal of Quantive Spectroscopy & Radiative Transfer 96 139

    [22]

    Hannelore K R, Geert K M 2011 MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules // www.atmosphere.mpg.de / spectral-atlas-mainz (2011.10.11)

    [23]

    Harold S L, Satoru S, Louis J D, Alberto M G 1999 US Patent 5886348

    [24]

    Wagner W, Pruss A 2002 J. Phys. Chem. Ref. Data 31 387

  • [1]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716

    [2]

    Gary K 2002 Spectrochimica Acta Part A 58 2373

    [3]

    Ehret G, Kiemle C, Renger W, Simmet G 1993 Appl. Opt. 32 24

    [4]

    Syed I, Edward V B 1989 Appl. Opt. 28 3603

    [5]

    Heusinkveld B G, Adrie F G J, Albert A M H 2008 Agricultural and Forest Meteorology 148 1563

    [6]

    Arroyo M P, Hanson R K 1993 Appl. Opt. 32 6104

    [7]

    Fix A, Ehret G, Löhring J, Hoffmann D, Alpers M 2010 Appl. Phys. B, DOI: 10.1007/s 00340-010-4310-5

    [8]

    Schneider M, Romero P M, Hase F, Blumenstock T, Cuevas E, Ramos R 2010 Atmos. Meas. Tech. 3 323

    [9]

    Greenblatt G, Orlando J, Burkholder J, Ravishankara A 1990 J. Geophys. Res. 95 18577

    [10]

    Solomon S, Portmann R W, Sanders R W, Daniel J S, Madsen W, Bartram B, Dutton E G 1999 J. Geophys. Res. 104 12047

    [11]

    Lee D S, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo K L, Olivier J G J, Dentener F J, Bouwman A 1997 Atmos. Environ. 31 1735

    [12]

    Platt U, Perner D, Patz H 1979 J. Geophys. Res. 84 6329

    [13]

    Si F Q, Xie P H, Dou K, Zhan K, Liu Y, Xu J, Liu W Q 2010 Acta Phys. Sin. 59 2867 (in Chinese) [司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清 2010 物理学报 59 2867]

    [14]

    Buchwitz M, Rozanov V V, Burrows J P 2000 J. Geophys. Res. 105 15231

    [15]

    Gerilowski K, Tretner A, Krings T, Buchwitz M, Bertagnolio P P, Belemezov F, Erzinger J, Burrows J P, Bovensmann H 2011 Atmos. Meas. Tech. 4 215

    [16]

    Krings T, Gerilowski K, Buchwitz M, Reuter M, Tretner A, Erzinger J, Heinze D, Burrows J P, Bovensmann H 2011 Atmos. Meas. Tech. 4 2207

    [17]

    Hao N, Zhou B, Chen L M 2006 Acta Phys. Sin. 55 1529 (in Chinese) [郝楠, 周斌, 陈立民 2006 物理学报 55 1529]

    [18]

    Sun Y W, Liu W Q, Wang S M, Huang S H 2011 Spectroscopy and Spectral Analysis 10 31 (in Chinese) [孙友文, 刘文清, 汪世美, 黄书华 2011 光谱学与光谱分析 10 31]

    [19]

    Sun Y W, Liu W Q, Zeng Y, Wang S M, Huang S H 2011 Chin. Phys. Lett. 28 28

    [20]

    Sun Y W, Liu W Q, Wang S M, Huang S H, Yu X M 2011 Chin. Opt. Lett. 3 9

    [21]

    Rothman L S, Jaquemart D, Barbe A 2005 Journal of Quantive Spectroscopy & Radiative Transfer 96 139

    [22]

    Hannelore K R, Geert K M 2011 MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules // www.atmosphere.mpg.de / spectral-atlas-mainz (2011.10.11)

    [23]

    Harold S L, Satoru S, Louis J D, Alberto M G 1999 US Patent 5886348

    [24]

    Wagner W, Pruss A 2002 J. Phys. Chem. Ref. Data 31 387

  • [1] 王慧云, 冯婕, 王旭东, 温阳, 魏久焱, 温焕飞, 石云波, 马宗敏, 李艳君, 刘俊. 室温超高真空环境原子尺度Au/Si(111)-(7×7)不定域吸附的局域接触势能差测量技术. 物理学报, 2022, 71(6): 060702. doi: 10.7498/aps.71.20211853
    [2] 苏兆锋, 来定国, 邱孟通, 徐启福, 任书庆. 脉冲硬X射线能注量测量技术. 物理学报, 2020, 69(14): 145202. doi: 10.7498/aps.69.20191700
    [3] 任红梅, 李昂, 胡肇焜, 黄业园, 徐晋, 谢品华, 钟鸿雁, 李晓梅. 基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布. 物理学报, 2020, 69(20): 204204. doi: 10.7498/aps.69.20200588
    [4] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [5] 夏彦文, 申淼, 孙志红, 彭志涛, 卢宗贵, 周松, 张波, 粟敬钦. 超短激光脉冲波形的单次测量技术. 物理学报, 2017, 66(4): 044204. doi: 10.7498/aps.66.044204
    [6] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [7] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量. 物理学报, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [8] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [9] 何永周. 大块永磁铁低温剩磁测量技术研究. 物理学报, 2013, 62(21): 217502. doi: 10.7498/aps.62.217502
    [10] 吴迎春, 吴学成, Sawitree Saengkaew, 姜淏予, 洪巧巧, Gérard Gréhan, 岑可法. 全场彩虹技术测量喷雾浓度及粒径分布. 物理学报, 2013, 62(9): 090703. doi: 10.7498/aps.62.090703
    [11] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [12] 孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴. 差分吸收光谱技术在工业污染源烟气排放监测中的应用. 物理学报, 2013, 62(1): 010701. doi: 10.7498/aps.62.010701
    [13] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺. 单组分双分析通道红外气体检测方法研究. 物理学报, 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [14] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [15] 刘静, 郑卫民, 宋迎新, 初宁宁, 李素梅, 丛伟艳. 量子限制受主远红外电致发光器件的制备与测量. 物理学报, 2010, 59(4): 2728-2733. doi: 10.7498/aps.59.2728
    [16] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性. 物理学报, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [17] 张永斌, 徐亮, 毕传兴, 陈心昭. 基于声压-振速测量的单面声场分离技术. 物理学报, 2009, 58(12): 8364-8371. doi: 10.7498/aps.58.8364
    [18] 周 斌, 郝 楠, 陈立民. 夫琅禾费线对差分光学吸收光谱法测量大气污染气体影响的研究. 物理学报, 2005, 54(9): 4445-4450. doi: 10.7498/aps.54.4445
    [19] 杨家敏, 丁耀南, 易荣清, 王耀梅, 张文海, 郑志坚. 软X射线能谱定量测量技术研究. 物理学报, 2001, 50(9): 1723-1728. doi: 10.7498/aps.50.1723
    [20] 施伟, 陆福全, 吴松茂, 汤家镛, 杨福家. 光学共振方法测量离子能量. 物理学报, 1992, 41(4): 568-572. doi: 10.7498/aps.41.568
计量
  • 文章访问数:  5136
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-23
  • 修回日期:  2011-12-31
  • 刊出日期:  2012-07-05

红外差分光学吸收光谱技术测量环境大气中的水汽

  • 1. 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 合肥 230031;
  • 2. 香港城市大学能源与环境学院, 香港
    基金项目: 国家高技术研究发展计划(批准号: 2009AA063006)、国家自然科学基金(批准号: 40805015) 和安徽省优秀青年科技基金(批准号: 10040606Y28)资助的课题.

摘要: 研究了基于红外差分光学吸收光谱技术的环境大气中的水汽测量方法. 所用实验装置由自制的非分散红外多组分气体分析仪改装而成, 根据HITRAN数据库提供的线强参数,采用Voigt展宽线型和方法,并考虑温度、 气压及仪器函数的影响,计算出了水汽反演波段的有效吸收截面. 将反演的水汽浓度与非分散红外分析仪的测量结果进行了实时对比, 得到了较好的测量一致性,测量相关系数为0.93347. 为今后采用红外DOAS技术测量其他在紫外可见波段无吸收或仅有弱吸收的气体 (如CO2, CH4, CO, N2O等)提供了可借鉴的解决方案.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回