-
光致发光光谱能够揭示半导体材料带隙、杂质能级等电子结构信息, 还可分析界面、载流子寿命、量子效率, 在紫外-近红外波段得到广泛应用. 在约4 μm以长红外波段, 由于热背景干扰强、光致发光信号弱、探测能力低, 光致发光光谱研究长期受限. 本文介绍了利用傅里叶变换光谱仪测量光致发光光谱的常规方法, 简述了为突破红外波段困境于1989年提出、历经20多年发展的连续扫描傅里叶变换双调制光致发光光谱方法及所受机理局限; 分析了2006年报道的基于步进扫描傅里叶变换光谱仪的红外调制光致发光光谱方法的抗干扰、灵敏度、信噪比优势, 列举了国际上诸多研究组对红外调制光致发光光谱方法有效性的例证和以此取得的应用研究进展; 总结了近年来宽波段、高通量扫描成像和空间微区分辨红外调制光致发光光谱测试方法发展以及从0.56—20 μm可见-远红外宽波段覆盖到千级通道光谱高通量检测、2—3 μm微区分辨红外调制光致发光光谱技术进步, 列举了应用研究稀氮/稀铋量子阱、HgCdTe外延膜、InAs/GaSb超晶格等可见-远红外半导体材料阶段结果和合作研究典型进展. 本文展现了红外调制光致发光光谱方法先进性和宽波段、高通量扫描成像与空间微区分辨光谱测试方法有效性, 预见了未来进一步应用研究方向.
-
关键词:
- 光致发光 /
- 傅里叶变换红外光谱仪 /
- 步进扫描 /
- 半导体
Photoluminescence (PL) spectroscopy has been widely used in the ultraviolet-near-infrared spectral range for over seventy years since its early reporting in the 1950’s, because it not only reveals the electronic structure information about such as band gap and impurity energy levels of semiconductor materials, but also serves as an efficient tool for analyzing interfacial structures, carrier lifetime, and quantum efficiency. However, in the infrared band beyond about 4 μm, the study of PL spectrum has been limited for decades due to strong thermal background interference, weak PL signals and low detection capability. In this review, a traditional PL method is introduced based on a Fourier transform infrared (FTIR) spectrometer, and a continuous-scan FTIR spectrometer-based double-modulation PL (csFTIR-DMPL) method is briefly described which was proposed in 1989 for breaking through the dilemma of the infrared band, and developed continuously in the later more than 20 years, with its limitations emphasized. Then, a step-scan FTIR spectrometer-based infrared modulated PL (ssFTIR-MPL) method reported in 2006 is analyzed with highlights on its advantages of anti-interference, sensitivity and signal-to-noise ratio. The effectiveness demonstration and application progress of this method in many research groups around the world are listed. Further developments in recent years are then summarized of wide-band, high-throughput scanning imaging and spatial micro-resolution infrared modulated PL spectroscopic experimental systems, and the technological progresses are demonstrated of infrared-modulated PL spectroscopy from 0.56–20 μm visible-far-infrared broadband coverage to >1000 high-throughput spectra imaging and ≤2–3 μm spatial micro-resolution. Typical achievements of collaborative research are enumerated in the visible-far-infrared semiconductor materials of dilute nitrogen/dilute bismuth quantum wells, HgCdTe epitaxial films, and InAs/GaSb superlattices. The results presented demonstrate the advancement of infrared modulated PL spectroscopy and the effectiveness of the experimental systems, and foresee further application and development in the future. -
图 1 (a) FTIR-PL光谱测试原理图. (b) 不同半导体材料PL光谱, 其中①为HgCdTe厚膜, ②为InGaNAs /GaAs量子阱(QW), ③为InGaP QW, 黑色实线为实测结果, 红色虚线是局部放大图
Fig. 1. (a) Schematic of a FTIR-PL spectroscopic system. (b) PL spectra in different spectral bands from semiconductors, where ① is the HgCdTe epilayer, ② is the InGaNAs/GaAs quantum well (QW), and ③ is the InGaP QW, black lines for measured data, red dashes for partially zoomed-in.
图 2 (a) ssFTIR-MPL光谱测试原理图[25]. (b)不同半导体材料PL光谱, 其中①为HgCdTe外延膜, ③为InGaP量子阱(QW), 黑色实线为FTIR-PL结果, 红色虚线是ssFTIR-MPL结果
Fig. 2. (a) Schematic of ssFTIR-MPL spectroscopic system[25]. (b) PL spectra in different spectral bands from semiconductors, where ① is HgCdTe epilayer, and ③ is InGaP quantum well (QW), black lines by FTIR-PL, and red dashes by ssFTIR-MPL methods.
图 3 (a) 宽波段ssFTIR-MPL光谱测试原理图; (b) InGa(N)As/GaAs量子阱(QW)低温磁光-PL光谱; (c) HgTe/HgCdTe超晶格变激发功率PL光谱; (d) 0.56—20 μm波段不同半导体PL光谱
Fig. 3. (a) Main components of wide-band ssFTIR-MPL spectroscopic experimental system; (b) low-temperature magneto-PL spectra of InGa(N)As/GaAs quantum well (QW); (c) excitation power-dependent PL spectra of HgTe/HgCdTe superlattice (SL) at 77 K; (d) PL spectra of different semiconductors in a wide spectral range of 0.56—20 μm.
图 4 (a) 扫描成像红外调制PL光谱测试原理图; (b) 532 nm泵浦光在会聚透镜和收集光抛物面反射镜公共焦点处的强度空间分布, 峰值强度1/2和$ 1/{{\mathrm{e}}}^{2} $对应光斑直径分别为15.3和26.3 μm, 插图为光斑图像[74]; (c) HgTe/HgCdTe超晶格表面5个不同坐标位置的典型 PL光谱, (720, 800)位置处PL光谱可以LE、ME和HE三个特征拟合, 插图显示实验系统使用Globar光源的响应波段范围[74]; (d)—(f) HgTe/HgCdTe超晶格样品960 μm×960 μm区域内25×25像素PL光谱LE, ME和HE拟合特征的能量、强度和FWHM图像[74]
Fig. 4. (a) Main components of scanning imaging IR-MPL spectroscopic system; (b) spatial profile of 532 nm pumping light intensity at the common focal point of the lens and parabolic mirror, 1/2 and $ 1/{{\mathrm{e}}}^{2} $ peak intensities correspond to spot diameters of 15.3 and 26.3 μm, respectively, insert for spot picture[74]; (c) typical PL spectra of HgTe/HgCdTe superlattice at 5 different coordinate positions, that at (720, 800) fitted with LE, ME and HE PL features, inset for system response with inner globar source[74]; (d)–(f) energy, intensity, and FWHM images of the LE, ME, and HE PL features of 25×25-pixel PL spectra on a 960 μm×960 μm surface part of HgTe/HgCdTe superlattice[74].
图 5 (a) IRM-μPL光谱测试原理图; (b) 激光定位在InAs/GaSb 超晶格不同台面和凹槽上的代表性μPL光谱, 竖直虚线显示低能PL光谱分量峰值能量变化, 插图所示样品μPL测试区域的表面光学形态[78]; (c) InAs/GaSb 超晶格测试区低能PL光谱分量积分强度微区空间分布[78]
Fig. 5. (a) Main components of the IRM-μPL spectroscopic system; (b) representative μPL spectra recorded at different mesas and grooves, low- and high-energy PL components from infrared absorption layer and electron barrier layer of InAs/GaSb superlattice, vertical dashes for peak energy variation of the low-energy PL component, inset for optical morphology of the μPL mapped area[78]; (c) spatial distribution of integral intensity of the low-energy PL component in the measured area of InAs/GaSb superlattice[78].
表 1 不同研究组(报道)扫描成像红外PL光谱空间分辨率等参数比较
Table 1. Comparison of spatial resolution and other parameters of scanning imaging infrared PL spectroscopy by different research groups.
-
[1] Fonoberov V A, Pokatilov E P, Fomin V M, Devreese J T 2004 Phys. Rev. Lett. 92 127402Google Scholar
[2] Wang Q Q, Muller A, Cheng M T, Zhou H J, Bianucci P, Shih C K 2005 Phys. Rev. Lett. 95 187404Google Scholar
[3] Jho Y D, Wang X, Kono J, Reitze D H, Wei X, Belyanin A A, Kocharovsky V V, Kocharovsky Vl V, Solomon G S 2006 Phys. Rev. Lett. 96 237401Google Scholar
[4] Jones R E, Yu K M, Li S X, Walukiewicz W, Ager J W, Haller E E, Lu H, Schaff W J 2006 Phys. Rev. Lett. 96 125505Google Scholar
[5] 邵军 2003 物理学报 52 1743Google Scholar
Shao J 2003 Acta Phys. Sin. 52 1743Google Scholar
[6] Bignazzi A, Grilli E, Radice M, Guzzi M, Castiglioni E 1996 Rev. Sci. Instrum. 67 666Google Scholar
[7] Barbillat J, Barny P L, Divay L, Lallier E, Grisard A, Deun R Van, Fias P 2003 Rev. Sci. Instrum. 74 4954Google Scholar
[8] Furstenberg R, Soares J A, White J O 2006 Rev. Sci. Instrum. 77 073101Google Scholar
[9] Liu M, Wang C, Zhou L Q 2019 Chin. Phys. B 28 037804Google Scholar
[10] Eich D, Schirmacher W, Hanna S, Mahlein K M, Fries P, Figgemeier H 2017 J. Electron. Mater. 46 5448Google Scholar
[11] Yang X L, Arita M, Kako S, Arakawa Y 2011 Appl. Phys. Lett. 99 113106Google Scholar
[12] Deshpande S, Das A, Bhattacharya P 2013 Appl. Phys. Lett. 102 161114Google Scholar
[13] Basnet R, Sun C, Wu H, Nguyen H T, Rougieux F E, Macdonald D 2018 J. Appl. Phys. 124 243101Google Scholar
[14] Fuchs F, Lusson A, Wagner J, Koidl P 1989 Proc. SPIE 1145 323Google Scholar
[15] Reisinger A R, Roberts R N, Chinn S R, Myers II T H 1989 Rev. Sci. Instrum. 60 82Google Scholar
[16] Ullrich B, Brown G J 2012 Rev. Sci. Instrum. 83 016105Google Scholar
[17] Zhang Y G, Gu Y, Wang K, Fang X, Li A Z, Liu K H 2012 Rev. Sci. Instrum. 83 053106Google Scholar
[18] Tomm J W, Herrmann K H, Hoerstel W, Lindstaedt M, Kissel H, Fuchs F 1994 J. Cryst. Growth 138 175Google Scholar
[19] LentzG, Magnea N, Mariette H, Tuffigo H, Feuillet G, Fontenille J, Ligeon E, Saminadayar K 1990 J. Cryst. Growth 101 195Google Scholar
[20] Fuchs F, Schneider H, Koidl P, Schwarz K, Walcher H, Triboulet R 1991 Phys. Rev. Lett. 67 1310Google Scholar
[21] Kasai J, Katayama Y 1995 Rev. Sci. Instrum. 66 3738Google Scholar
[22] Freeman J R, Brewer A, Beere H E, Ritchie D A 2011 J. Appl. Phys. 110 013103Google Scholar
[23] Ikezawa M, Sakuma Y, Zhang L, Sone Y, Mori T, Hamano T, Watanabe M, Sakoda K, Masumoto Y 2012 Appl. Phys. Lett. 100 042106Google Scholar
[24] Nguyen H T, Han Y, Ernst M, Fell A, Franklin E, Macdonald D 2015 Appl. Phys. Lett. 107 022101Google Scholar
[25] Shao J, Lu W, Lü X, Yue F Y, Li Z F, Guo S L, Chu J H 2006 Rev. Sci. Instrum. 77 063104Google Scholar
[26] Shao J, Yue F Y, Lü X, Lu W, Huang W, Li Z F, Guo S L, Chu J H 2006 Appl. Phys. Lett. 89 182121Google Scholar
[27] Shao J, Lü X, Lu W, Yue F Y, Huang W, Li N, Wu J, He L, Chu J H 2007 Appl. Phys. Lett. 90 171101Google Scholar
[28] Shao J, Ma L L, Lü X, Lu W, Wu J, Zha F X, Wei Y F, Li Z F, Guo S L, Yang J R, He L, Chu J H 2008 Appl. Phys. Lett. 93 131914Google Scholar
[29] Shao J, Chen L, Lü X, Lu W, He L, Guo S L, Chu J H 2009 Appl. Phys. Lett. 95 041908Google Scholar
[30] Shao J, Chen L, Lu W, Lü X, Zhu L Q, Guo S L, He L, Chu J H 2010 Appl. Phys. Lett. 96 121915Google Scholar
[31] Hempel M, Tomm J W, Yue F Y, Bettiati M A, Elsaesser T 2014 Laser Photonics Rev. 8 L59Google Scholar
[32] Morozov S V, Rumyantsev V V, Antonov A V, Maremyanin K V, Kudryavtsev K E, Krasilnikova L V, Mikhailov N N, Dvoretskii S A, Gavrilenko V I 2014 Appl. Phys. Lett. 104 072102Google Scholar
[33] Rumyantsev V V, Dubinov A A, Utochkin V V, Fadeev M A, Aleshkin V Y, Razova A A, Mikhailov N N, Dvoretsky S A, Gavrilenko V I, Morozov S V 2022 Appl. Phys. Lett. 121 182103Google Scholar
[34] Rumyantsev V V, Mazhukina K A, Utochkin V V, Kudryavtsev K E, Dubinov A A, Aleshkin V Y, Razova A A, Kuritsin D I, Fadeev M A, Antonov A V, Mikhailov N N, Dvoretsky S A, Gavrilenko V I, Teppe F, Morozov S V 2024 Appl. Phys. Lett. 124 161111Google Scholar
[35] Fadeev M A, Rumyantsev V V, Kadykov A M, Dubinov A A, Antonov A V, Kudryavtsev K E, Dvoretskii S A, Mikhailov N N, Gavrilenko V I, Morozov S V 2018 Opt. Express 26 12755Google Scholar
[36] Galeeva A V, Egorova S G, Chernichkin V I, Tamm M E, Yashina L V, Rumyantsev V V, Morozov S V, Plank H, Danilov S N, Ryabova L I, Khokhlov D R 2016 Semicond. Sci. Technol. 31 095010Google Scholar
[37] Motyka M, Sek G, Misiewicz J, Bauer A, Dallner M, Hofling S, Forchel A 2009 Appl. Phys. Express 2 126505Google Scholar
[38] Smołka T, Motyka M, Romanov V V, Moiseev K D 2022 Materials 15 1419Google Scholar
[39] Majkowycz K, Murawski K, Kopytko M 2024 Infrared Phy. Technol 137 105126Google Scholar
[40] Arad-Vosk N, Beach R, Ron A, Templeman T, Golan Y, Sarusi G, Sa’ar A 2018 Nanotechnol. 29 115202Google Scholar
[41] Jang M, Litwin P M, Yoo S, McDonnell S J, Dhar N K, Gupta M C 2019 J. Appl. Phys. 126 105701Google Scholar
[42] Chen C, Chen F, Chen X L, Deng B C, Eng B, Jung D, Guo Q S, Yuan S F, Watanabe K, Taniguchi T, Lee M L, Xia F N 2019 Nano Lett. 19 1488Google Scholar
[43] Chen C, Lu X B, Deng B C, Chen X L, Guo Q S, Li C, Ma C, Yuan S F, Sung E, Watanabe K, Taniguchi T, Yang L, Xia F N 2020 Sci. Adv. 6 eaay6134Google Scholar
[44] Zhu L Q, Shao J, Lü X, Guo S L, Chu J H 2011 J. Appl. Phys. 109 013509Google Scholar
[45] Zhu L Q, Song Y, Qi Z, Wang S M, Zhu L Q, Chen X, Zha F X, Guo S L, Shao J H 2016 J. Lumin. 169 132Google Scholar
[46] Shao J, Qi Z, Zhao H, Zhu L Q, Song Y, Chen X R, Zha F X, Guo S L, Wang S M 2015 J. Appl. Phys. 118 165305Google Scholar
[47] Chen X R, Song Y, Zhu L Q, Wang S M, Lu W, Guo S L, Shao J 2013 J. Appl. Phys. 113 153505Google Scholar
[48] Dou C, Chen X R, Chen Q M, Song Y X, Ma N, Zhu L Q, Tan C S, Han L, Yu D G, Wang S M, Shao J 2022 Phys. Status Solidi B 259 2100418Google Scholar
[49] Yan B, Chen X R, Zhu L Q, Pan W W, Wang L J, Yue L, Zhang X L, Han L, Liu F, Wang S M, Shao J 2019 Appl. Phys. Lett. 114 052104Google Scholar
[50] Chen X R, Wu X Y, Yue L, Zhu L Q, Pan W W, Qi Z, Wang S M, Shao J 2017 Appl. Phys. Lett. 110 051903Google Scholar
[51] Chen X R, Zhao H, Wu X Y, Wang L, Zhu L Q, Song Y, Wang S M, Shao J 2019 Phys. Status Solidi B 256 1800694Google Scholar
[52] Zhu L Q, Shao J, Zhu L, Chen X R, Qi Z, Lin T, Bai W, Tang X D, Chu J H 2015 J. Appl. Phys. 118 045707Google Scholar
[53] Zhu L Q, Shao J, Chen X R, Li Y Q, Zhu L, Qi Z, Lin T, Bai W, Tang X D, Chu J H 2016 Phys. Rev. B 94 155201Google Scholar
[54] Chen X R, Zhuang Q, Alradhi H, Jin Z M, Zhu L Q, Chen X R, Shao J 2017 Nano Lett. 17 1545Google Scholar
[55] Chen X R, Zhou Y, Zhu L Q, Qi Z, Xu Q, Xu Z, Guo S L, Chen J X, He L, Shao J 2014 Jpn. J. Appl. Phys. 53 082201Google Scholar
[56] Chen X R, Xu Z C, Zhou Y, Zhu L Q, Chen J X, Shao J 2020 Appl. Phys. Lett. 117 081104Google Scholar
[57] Chen X R, Xing J, Zhu L Q, Zha F X, Niu Z, Guo S L, Shao J 2016 J. Appl. Phys. 119 175301Google Scholar
[58] Zhang X H, Shao J, Chen L, Lu X, Guo S L, He L, Chu J H 2011 J. Appl. Phys. 110 043503Google Scholar
[59] Shao J, Lu W, Tsen G K O, Guo S L, Dell J M 2012 J. Appl. Phys. 112 063512Google Scholar
[60] Zhu L Q, Liu S, Shao J, Chen X, Liu F, Hu Z, Chu J H 2023 Chin. Phys. Lett. 40 077503Google Scholar
[61] Zha F X, Shao J, Jiang J, Yang W Y 2007 Appl. Phys. Lett. 90 201112Google Scholar
[62] Zhang B P, Cai C F, Jin S Q, Ye Z Y, Wu H Z, Qi Z 2014 Appl. Phys. Lett. 105 022109Google Scholar
[63] Deng Z, Chen B L, Chen X R, Shao J, Gong Q, Liu H Y, Wu J 2018 Infrared Phys. Technol. 90 115Google Scholar
[64] Zhuang Q D, Alradhi H, Jin Z M, Chen X R, Shao J, Chen X, Sanchez A M, Cao Y C, Liu J Y, Yates P, Durose K, Jin C J 2017 Nanotechnol. 28 105710Google Scholar
[65] Huang J L, Ma W Q, Wei Y, Zhang Y H, Cui K, Cao Y L, Guo X L, Shao J 2012 IEEE J. Quant. Electron. 48 1322Google Scholar
[66] Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Hao H Y, Xu Y Q, Niu Z C 2014 J. Appl. Phys. 116 123107Google Scholar
[67] Pan W W, Zhang L Y, Zhu L, Li Y Y, Chen X R, Wu X Y, Zhang F, Shao J, Wang S M 2016 J. Appl. Phys. 120 105702Google Scholar
[68] Chen Q M, Zhang L Y, Song Y X, Chen X R, Koelling S, Zhang Z P, Li Y Y, Koenraad P M, Shao J, Tan C S, Wang S M, Gong Q 2021 ACS Appl. Nano Mater. 4 897Google Scholar
[69] Xu Z C, Chen J X, Wang F F, Zhou Y, Jin C, He L 2014 J. Cryst. Growth 386 220Google Scholar
[70] Furstenberg R, White J O, Dinan J H, Olson G L 2004 J. Electron. Mater. 33 714Google Scholar
[71] Dyksik M, Motyka M, Sęk G, Misiewicz J, Dallner M, Weih R, Kam M, Höfling S 2015 Nanoscale Res. Lett. 10 402Google Scholar
[72] Pepper B, Soibel A, Ting D, Hill C, Khoshakhlagh A, Fisher A, Keo S, Gunapala S 2019 Infrared Phys. Technol. 99 64Google Scholar
[73] Kwan D C M, Kesaria M, Anyebe E A, Alshahrani D O, Delmas M, Liang B L, Huffaker D L 2021 Appl. Phys. Lett. 118 203102Google Scholar
[74] Chen X R, Zhu L Q, Shao J 2019 Rev. Sci. Instrum. 90 093106Google Scholar
[75] Chen X R, Zhu L Q, Zhang Y C, Zhang F, Wang S M, Shao J 2021 Phys. Rev. Appl. 15 044007Google Scholar
[76] Chen X R, Wang M, Zhu L Q, Xie H, Chen L, Shao J 2023 Appl. Phys. Lett. 123 151105Google Scholar
[77] Shi Z Y, Yan D Y, Zhang Y C, Zhang F, Chen Y M, Gu C J, Chen X R, Shao J, Wang S M, Shen X 2023 J. Alloys Compounds 947 169410Google Scholar
[78] Chen X R, Shao J 2024 Microscopic mapping of infrared modulated photoluminescence spectroscopy with a spatial resolution of approximately 2 μm, to be published in Rev. Sci. Instrum. (2024
计量
- 文章访问数: 77
- PDF下载量: 8
- 被引次数: 0