-
CO是含碳化合物在燃烧过程中产生的一种重要中间物质, 通过对CO的吸收光谱测量可以实现对燃烧过程的诊断. 针对CO的测量多使用传统的单吸收线和双吸收线技术, 在基于吸收光谱技术的燃烧场二维参数分布测量中, 需设置大量的光束投影以满足空间分辨要求. 宽光谱吸收技术可以在单次扫描内获得整个宽带扫描波段的吸收信息, 与传统的分立谱线窄带吸收技术相比, 具有非常明显的技术优势. 使用宽光谱吸收技术可以大大减少光束投影数量要求, 有效降低系统复杂度, 改善参数反演鲁棒性, 提高测量系统适用性. 但是, 目前针对CO的宽光谱吸收测量则鲜有报道, 亟需开展相关的基础研究工作. 本文利用1.5 μm波段宽带可调谐光源对室温中的CO开展了宽光谱吸收测量实验, 并对不同压强下CO的吸收特性进行了对比, 实验测量结果与HITRAN2016数据库相吻合. 利用1565—1570 nm范围内的实测宽光谱吸收数据, 通过一阶导数法对CO温度和摩尔分数进行了反演; 虽然宽带吸收光谱各吸收峰强度测量值存在一定畸变, 但依然得到了准确的反演结果, 温度和摩尔分数反演误差均在5%以内, 验证了宽光谱吸收测量的可靠性, 为后续基于CO宽光谱吸收测量的燃烧流场二维层析诊断提供了技术支撑.
-
关键词:
- 吸收光谱 /
- 可调谐二极管激光吸收光谱技术 /
- 宽光谱吸收 /
- 二维层析诊断 /
- 燃烧流场
As an important medial product in the combustion process of carbon-based compounds, CO serves as one of the preferable candidates for combustion diagnosis in absorption spectrum. So far, most of researches have focused on the conventional one-line or dual-line technique, which requires a number of beam projections for two-dimension (2D) tomography of combustion field. Hyperspectral absorption spectroscopy enables continuous acquisition of absorption information over a whole absorption band, rather than one or two discrete absorption lines, demonstrating remarkable advantage over the traditional one-line and dual-line techniques. Hyperspectral absorption spectroscopy can not only reduce the system complexity with limited projections for high spatial resolution 2D tomography, but also improve the system applicability by refining the measurement robustness. However, up to now, little attention has been paid to hyperspectral absorption of CO. Here, by using a wideband tunable laser source around 1.5 μm, experiments are conducted at room temperature to investigate the hyperspectral absorption characteristics of CO in the near infrared band. Absorptions under different pressure conditions are compared with each other. And, the measured results are consistent with the HITRAN2016 database. With the measured hyperspectral absorption information in the 1565–1570 nm range, temperature and mole fraction of CO are derived by the first derivative method. Despite the distortion of the recorded absorption peaks, accurate results are obtained with measurement errors within 5% for both temperature and mole fraction, thereby validating the reliability of hyperspectral absorption technique for CO. And, this research is instructive for future 2D tomography of combustion fields based on hyperspectral absorption of CO.-
Keywords:
- absorption spectroscopy /
- tunable diode laser absorption spectroscopy /
- hyperspectral absorption /
- two-dimension tomography /
- combustion field
[1] 陈健 2019 硕士学位论文(天津: 天津大学)
Chen J 2019 M. S. Thesis (Tianjin: Tianjin University
[2] 王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar
Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar
[3] Devolder P, Dusanter S, Lemoine B, Fittschen C 2006 Chem. Phys. Lett. 417 154Google Scholar
[4] 张雅琪 2019 硕士学位论文(杭州: 浙江大学)
Zhang Y Q 2019 M. S. Thesis (Hangzhou: Zhejiang University
[5] Fu B, Zhang C, Lü W, Sun J, Shang C, Cheng Y, Xu L 2022 Appl. Spectrosc. Rev. 57 112Google Scholar
[6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132
[7] Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta, Part B 106 45Google Scholar
[8] Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar
[9] 刘晶儒, 胡志云, 张振荣, 关小伟, 王晟, 陶波, 叶景峰, 张立荣, 黄梅生, 赵新艳, 叶锡生 2011 光学精密工程 19 284
Liu J R, Hu Z Y, Zhang Z R, Guan X W, Wang S, Tao B, Ye J F, Zhang L R, Huang M S, Zhao X Y, Ye X S 2011 Opt. Precis. Eng. 19 284
[10] 李留成, 多丽萍, 周冬建, 王增强, 王元虎, 唐书凯 2019 红外与激光工程 48 0805011Google Scholar
Li L C, Duo L P, Zhou D J, Wang Z Q, Wang Y H, Tang S K 2019 Infrared Laser Eng. 48 0805011Google Scholar
[11] Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl. Phys. B 109 533Google Scholar
[12] Sur R, Sun K, Jeffries J B, Hanson R K, Pummill R J, Waind T, Wagner D R, Whitty K J 2014 Appl. Phys. B 116 33
[13] 彭于权, 阚瑞峰, 许振宇, 夏晖晖, 聂伟, 张步强 2018 中国激光 45 0911010Google Scholar
Peng Y Q, Kan R F, Xu Z Y, Xia H H, Nie W, Zhang B Q 2018 Chin. J. Lasers 45 0911010Google Scholar
[14] Sane A, Satijia A, Lucht R P, Gore J P 2014 Appl. Phys. B 117 7
[15] Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60 [胡尚炜, 殷可为, 涂晓波, 杨富荣, 陈爽 2021 实验流体力学 35 60Google Scholar
Google ScholarHu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech.35 60 [16] Sappey A D, Masterson P, Huelson E, Howell J, Estes M, Hofvander H, Jobson A 2011 Combust. Sci. Technol. 183 1282Google Scholar
[17] Sepman A, Ogren Y, Gullberg M, Wiinikka H 2016 Appl. Phys. B 122 29
[18] Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar
[19] Tao M M, Tao B, Hu Z Y, Feng G B, Ye X S, Zhao J 2017 Opt. Express 25 32386Google Scholar
[20] Sanders S T 2001 Ph. D. Dissertation (Stanford, CA: Stanford University
[21] Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225Google Scholar
[22] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 物理学报 69 034205Google Scholar
Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar
[23] Grauer S J, Emmert J, Sanders S T, Wagner S, Daun K J 2019 Meas. Sci. Tchnol. 30 105401Google Scholar
[24] Kranendonk L A, Caswell A W, Sanders S T 2007 Appl. Opt. 46 4117Google Scholar
[25] Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar
[26] Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar
[27] Ma L, Cai W W 2008 Appl. Opt. 47 3751Google Scholar
[28] Ma L, Cai W W 2008 Appl. Opt. 47 4186Google Scholar
[29] Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 034101Google Scholar
[30] Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6578Google Scholar
[31] Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 045301Google Scholar
[32] Deguchi Y, Kamimoto T, Kiyota Y 2015 Flow Meas. Instrum. 46 312Google Scholar
[33] Tsekenis S A, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar
[34] Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K, McCann H 2015 Int. J. Engine Res. 16 565Google Scholar
[35] Liu C, Cao Z, Lin Y, Xu L, McCann H 2018 IEEE Trans Instrum. Meas. 67 1338Google Scholar
[36] Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar
[37] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标 2022 物理学报 71 114203Google Scholar
Tao M M, Wang Y M, Wu H L, Li G H, Wang S, Tao B, Ye J F, Feng G B, Ye X S, Chen W B 2022 Acta Phys. Sin. 71 114203Google Scholar
[38] Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar
-
表 1 双线法反演得到的温度信息
Table 1. Temperature derived by dual-line method
Lines T/K L1 L2 L3 L4 L1 — 401.66 318.64 342.92 L2 401.66 — 259.62 316.15 L3 318.64 259.61 — 417.04 L4 342.92 316.15 417.03 — -
[1] 陈健 2019 硕士学位论文(天津: 天津大学)
Chen J 2019 M. S. Thesis (Tianjin: Tianjin University
[2] 王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar
Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar
[3] Devolder P, Dusanter S, Lemoine B, Fittschen C 2006 Chem. Phys. Lett. 417 154Google Scholar
[4] 张雅琪 2019 硕士学位论文(杭州: 浙江大学)
Zhang Y Q 2019 M. S. Thesis (Hangzhou: Zhejiang University
[5] Fu B, Zhang C, Lü W, Sun J, Shang C, Cheng Y, Xu L 2022 Appl. Spectrosc. Rev. 57 112Google Scholar
[6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132
[7] Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta, Part B 106 45Google Scholar
[8] Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar
[9] 刘晶儒, 胡志云, 张振荣, 关小伟, 王晟, 陶波, 叶景峰, 张立荣, 黄梅生, 赵新艳, 叶锡生 2011 光学精密工程 19 284
Liu J R, Hu Z Y, Zhang Z R, Guan X W, Wang S, Tao B, Ye J F, Zhang L R, Huang M S, Zhao X Y, Ye X S 2011 Opt. Precis. Eng. 19 284
[10] 李留成, 多丽萍, 周冬建, 王增强, 王元虎, 唐书凯 2019 红外与激光工程 48 0805011Google Scholar
Li L C, Duo L P, Zhou D J, Wang Z Q, Wang Y H, Tang S K 2019 Infrared Laser Eng. 48 0805011Google Scholar
[11] Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl. Phys. B 109 533Google Scholar
[12] Sur R, Sun K, Jeffries J B, Hanson R K, Pummill R J, Waind T, Wagner D R, Whitty K J 2014 Appl. Phys. B 116 33
[13] 彭于权, 阚瑞峰, 许振宇, 夏晖晖, 聂伟, 张步强 2018 中国激光 45 0911010Google Scholar
Peng Y Q, Kan R F, Xu Z Y, Xia H H, Nie W, Zhang B Q 2018 Chin. J. Lasers 45 0911010Google Scholar
[14] Sane A, Satijia A, Lucht R P, Gore J P 2014 Appl. Phys. B 117 7
[15] Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60 [胡尚炜, 殷可为, 涂晓波, 杨富荣, 陈爽 2021 实验流体力学 35 60Google Scholar
Google ScholarHu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech.35 60 [16] Sappey A D, Masterson P, Huelson E, Howell J, Estes M, Hofvander H, Jobson A 2011 Combust. Sci. Technol. 183 1282Google Scholar
[17] Sepman A, Ogren Y, Gullberg M, Wiinikka H 2016 Appl. Phys. B 122 29
[18] Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar
[19] Tao M M, Tao B, Hu Z Y, Feng G B, Ye X S, Zhao J 2017 Opt. Express 25 32386Google Scholar
[20] Sanders S T 2001 Ph. D. Dissertation (Stanford, CA: Stanford University
[21] Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225Google Scholar
[22] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 物理学报 69 034205Google Scholar
Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar
[23] Grauer S J, Emmert J, Sanders S T, Wagner S, Daun K J 2019 Meas. Sci. Tchnol. 30 105401Google Scholar
[24] Kranendonk L A, Caswell A W, Sanders S T 2007 Appl. Opt. 46 4117Google Scholar
[25] Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar
[26] Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar
[27] Ma L, Cai W W 2008 Appl. Opt. 47 3751Google Scholar
[28] Ma L, Cai W W 2008 Appl. Opt. 47 4186Google Scholar
[29] Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 034101Google Scholar
[30] Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6578Google Scholar
[31] Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 045301Google Scholar
[32] Deguchi Y, Kamimoto T, Kiyota Y 2015 Flow Meas. Instrum. 46 312Google Scholar
[33] Tsekenis S A, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar
[34] Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K, McCann H 2015 Int. J. Engine Res. 16 565Google Scholar
[35] Liu C, Cao Z, Lin Y, Xu L, McCann H 2018 IEEE Trans Instrum. Meas. 67 1338Google Scholar
[36] Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar
[37] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标 2022 物理学报 71 114203Google Scholar
Tao M M, Wang Y M, Wu H L, Li G H, Wang S, Tao B, Ye J F, Feng G B, Ye X S, Chen W B 2022 Acta Phys. Sin. 71 114203Google Scholar
[38] Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar
计量
- 文章访问数: 2943
- PDF下载量: 61
- 被引次数: 0