搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SF6分子的10.6 μm高分辨射流冷却激光吸收光谱

袁洪瑞 刘涛 朱天鑫 刘云 李响 陈杨 段传喜

引用本文:
Citation:

SF6分子的10.6 μm高分辨射流冷却激光吸收光谱

袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜

High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm

Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi
PDF
HTML
导出引用
  • 六氟化硫(SF6)是一种长寿命的温室气体, 其红外吸收光谱对模拟大气辐射平衡非常重要. SF6也是研究激光分离同位素原理和技术的典型体系之一. 由于SF6分子较重, 其室温下的红外光谱非常密集, 给利用吸收光谱技术监测不同SF6同位素分子的相对浓度带来很大困难. 本文利用超声射流冷却和像散型多程吸收池技术, 测量了32SF633SF6同位素分子在10.6 μm波段的高分辨红外激光吸收光谱. 处于振动基态的32SF633SF6分子在狭缝型超声射流中的转动温度约为10 K, 谱线线宽约为0.0008 cm–1. 在此条件下观测到了SF6一个新的热带, 其Q支的位置在941.0 cm–1附近. 将其初步归属为32SF6的(v1+v2+v3)–(v1+v2) 带, 对该热带进行简化的转动分析, 并讨论利用该热带和33SF6v3基频带进行33SF6/32SF6的相对浓度监测的可行性.
    Sulfur hexafluoride (SF6) is a greenhouse gas of very long lifetime. Its infrared absorption spectrum is very important in modeling the atmospheric radiation balances. The SF6 is also a prototypical system for studying the principles and techniques of laser isotope separation using powerful infrared lasers. As a very heavy molecule, the infrared spectrum of SF6 at room temperature is very dense, which poses a great challenge to monitoring the relative abundances of different SF6 isotopomers by direct absorption spectroscopy. Supersonic jet expansions have been widely used to simplify the gas phase molecular spectra. In this work, astigmatic multi-pass absorption cell and distributed feed-back quantum cascade lasers (QCLs) are used to measure jet-cooled rovibrational absorption spectra of 32SF6 and 33SF6 at 10.6 μm. The spectrometer works in a segmented rapid-scan mode. The gas mixtures (SF6∶Ar∶He = 0.12∶1∶100) are expanded through an 80 mm $ \times $ 300 μm pulsed slit nozzle. Two QCLs running at room temperature are used and each one covers a spectral range of about 3.0 cm–1. The v3 fundamental bands of both 32SF6 and 33SF6 are observed. The rotational temperature of 32SF6 and 33SF6 in the ground state in the supersonic jet are both estimated at 10 K and the linewidth is about 0.0008 cm–1 by comparing the simulated spectrum with the observed spectrum with the PGOPHER program. A new weak vibrational band centered around 941.0 cm–1 is observed and tentatively assigned to the (v1+v2+v3)–(v1+v2) hot band of 32SF6. The effective Hamiltonian used to analyze the rovibrational spectrum of SF6 is briefly introduced. A simplified rotational analysis for this hot band is performed with the XTDS program developed by the Dijon group. The band-origin of this hot band is determined to be 941.1785(21) cm–1. The rotational temperature of this hot band is estimated at 50 K. A new scheme by measuring the jet-cooled absorption spectrum of this hot band of 32SF6 and the v3 fundamental band of 33SF6 is proposed for measuring the relative abundance of 33SF6/32SF6.
      通信作者: 段传喜, duanchx@mail.ccnu.edu.cn
    • 基金项目: 粒子输运与富集技术国防科技重点实验室基金资助的课题
      Corresponding author: Duan Chuan-Xi, duanchx@mail.ccnu.edu.cn
    • Funds: Project supported by the Fund of Science and Technology on Particle Transport and Separation Laboratory, China.
    [1]

    Geller L, Elkins J, Lobert J, Clarke A, Hurst D, Butler J, Myers R 1997 Geophys. Res. Lett. 24 675Google Scholar

    [2]

    Makarov G N 2005 Phys. Usp. 48 37Google Scholar

    [3]

    Zellweger J M, Philippoz J M, Melinon P, Monot, van den Bergh H 1984 Phys. Rev. Lett. 52 522Google Scholar

    [4]

    Eerkens J W 1998 Laser Part. Beams 16 295Google Scholar

    [5]

    Makarov G N 2015 Phys. Usp. 58 670Google Scholar

    [6]

    Sai Prasad M B, Padma Nilaya J, Ghosh A, Biswas D J 2020 Chem. Phys. 538 110831Google Scholar

    [7]

    Faye M, Boudon V, Loët M, Roy P, Manceron L 2017 J. Quant. Spectrosc. Radiat. Transfer 190 38Google Scholar

    [8]

    Faye M, Manceron L, Roy P, Boudon V, Loët M 2018 J. Mol. Spectrosc. 348 37Google Scholar

    [9]

    Ke H, Boudon V, Richard C, Madhur, Faye M, Manceron L 2020 J. Mol. Spectrosc. 368 111251Google Scholar

    [10]

    Boudon V, Hepp M, Herman M, Pak I, Pierre G 1998 J. Mol. Spectrosc. 192 359Google Scholar

    [11]

    Boudon V, Doménech J L, Bermejo D, Willner H 2004 J. Mol. Spectrosc. 228 392Google Scholar

    [12]

    Boudon V, Doménech J L, Ramos A, Bermejo D, Willner H 2006 Mol. Phys. 104 2653Google Scholar

    [13]

    Faye M, Manceron L, Roy P, Boudon V, Loëte M 2018 J. Mol. Spectrosc. 346 23Google Scholar

    [14]

    Luo W, Zhang Y L, Li W G, Duan C X 2017 J. Mol. Spectrosc. 334 22Google Scholar

    [15]

    Liu Z, Luo W, Duan C X 2019 J. Chem. Phys. 150 064302Google Scholar

    [16]

    Li X, Liu Z, Duan C X 2021 J. Mol. Spectrosc. 377 111424Google Scholar

    [17]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [18]

    Western C M 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 221Google Scholar

    [19]

    Asselin P, Turner A C, Bruel L, Brenner V, Gaveau M A, Mons M 2018 Phys. Chem. Chem. Phys. 20 28105Google Scholar

    [20]

    Rey M M, Chizhmakova I S, Nikitin A V, Tyuterev V G 2021 Phys. Chem. Chem. Phys. 23 12115Google Scholar

    [21]

    Champion J P, Loëte M, Pierre G 1992 Spectroscopy of the Earth's Atmosphere and Interstellar Medium (San Diego: Academic Press) pp339–422

    [22]

    Boudon V, Champion J P, Gabard T, et al. 2004 J. Mol. Spectrosc. 228 620Google Scholar

    [23]

    Wenger C, Boudon V, Rotger M, Sanzharov J P, Champion J P 2008 J. Mol. Spectrosc. 251 102Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  32SF6单体v3带附近的吸收光谱 (a) 32SF6单体v3振动带的模拟光谱, 线宽0.0008 cm–1 (~24 MHz), 转动温度10 K; (b)实验测量光谱

    Fig. 2.  Absorption spectrum at the v3 band region of 32SF6: (a) The simulated spectrum of the v3 band of 32SF6 with a linewidth of 0.0008 cm–1 (~24 MHz) and a rotational temperature of 10 K; (b) the experimental spectrum.

    图 3  33SF6单体v3带附近的吸收光谱 (a) 33SF6单体v3振动带的模拟光谱, 线宽0.0008 cm–1 (~24 MHz), 转动温度10 K; (b)实验测量光谱

    Fig. 3.  Absorption spectrum at the v3 band region of 33SF6: (a) The simulated spectrum of the v3 band of 33SF6 with a linewidth of 0.0008 cm–1 (~24 MHz) and a rotational temperature of 10 K; (b) the experimental spectrum.

    图 4  32SF6单体热带的吸收光谱 (a) 32SF6单体热带的模拟光谱, 线宽0.0008 cm–1 (~24 MHz), 转动温度50 K; (b)实验测量光谱

    Fig. 4.  Absorption spectrum of the tentatively assigned hot band of 32SF6. (a) The simulated spectrum of the hot band of 32SF6 with a linewidth of 0.0008 cm–1 (~24 MHz) and a rotational temperature of 50 K; (b) the experimental spectrum.

    表 1  32SF6的热带的分子参数

    Table 1.  Molecular parameters for the hot band of 32SF6

    Order${ {\varOmega } }(K, n{ {\varGamma } })$$ \left\{s\right\} $$ \left\{s'\right\} $Valuesb/cm–1
    GSa02(0, 0 A1g)000000 A1g000000 A1g9.10756$ \times {10}^{-3} $
    24(0, 0 A1g)000000 A1g000000 A1g–7.2689$ \times {10}^{-9} $
    24(4, 0 A1g)000000 A1g000000 A1g1.2227$ \times {10}^{-10} $
    Excited00(0, 0 A1g)001000 F1u001000 F1u941.1785(21)
    11(1, 0 F1g)001000 F1u001000 F1u0.26651(10)
    22(0, 0 A1g)001000 F1u001000 F1u–1.149(32)$ \times {10}^{-4} $
    22(0, 0 E1g)001000 F1u001000 F1u–1.1162(33)$ \times {10}^{-4} $
    注: a 基态分子参数固定于文献[9]的值; b 括号中的数字为标准偏差, 与参数值的最后两位对齐.
    下载: 导出CSV

    表 2  33SF6v3基频带和32SF6的热带的部分谱线频率

    Table 2.  A part of observed transition frequencies of the v3 fundamental band of 33SF6 and the hot band of 32SF6

    频率/cm–1
    33SF632SF6
    R(2)939.181 P(3)940.883
    R(3)939.238P(4)940.826
    R(4)939.294P(5)940.768
    R(5)939.350P(6)940.709
    下载: 导出CSV
  • [1]

    Geller L, Elkins J, Lobert J, Clarke A, Hurst D, Butler J, Myers R 1997 Geophys. Res. Lett. 24 675Google Scholar

    [2]

    Makarov G N 2005 Phys. Usp. 48 37Google Scholar

    [3]

    Zellweger J M, Philippoz J M, Melinon P, Monot, van den Bergh H 1984 Phys. Rev. Lett. 52 522Google Scholar

    [4]

    Eerkens J W 1998 Laser Part. Beams 16 295Google Scholar

    [5]

    Makarov G N 2015 Phys. Usp. 58 670Google Scholar

    [6]

    Sai Prasad M B, Padma Nilaya J, Ghosh A, Biswas D J 2020 Chem. Phys. 538 110831Google Scholar

    [7]

    Faye M, Boudon V, Loët M, Roy P, Manceron L 2017 J. Quant. Spectrosc. Radiat. Transfer 190 38Google Scholar

    [8]

    Faye M, Manceron L, Roy P, Boudon V, Loët M 2018 J. Mol. Spectrosc. 348 37Google Scholar

    [9]

    Ke H, Boudon V, Richard C, Madhur, Faye M, Manceron L 2020 J. Mol. Spectrosc. 368 111251Google Scholar

    [10]

    Boudon V, Hepp M, Herman M, Pak I, Pierre G 1998 J. Mol. Spectrosc. 192 359Google Scholar

    [11]

    Boudon V, Doménech J L, Bermejo D, Willner H 2004 J. Mol. Spectrosc. 228 392Google Scholar

    [12]

    Boudon V, Doménech J L, Ramos A, Bermejo D, Willner H 2006 Mol. Phys. 104 2653Google Scholar

    [13]

    Faye M, Manceron L, Roy P, Boudon V, Loëte M 2018 J. Mol. Spectrosc. 346 23Google Scholar

    [14]

    Luo W, Zhang Y L, Li W G, Duan C X 2017 J. Mol. Spectrosc. 334 22Google Scholar

    [15]

    Liu Z, Luo W, Duan C X 2019 J. Chem. Phys. 150 064302Google Scholar

    [16]

    Li X, Liu Z, Duan C X 2021 J. Mol. Spectrosc. 377 111424Google Scholar

    [17]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [18]

    Western C M 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 221Google Scholar

    [19]

    Asselin P, Turner A C, Bruel L, Brenner V, Gaveau M A, Mons M 2018 Phys. Chem. Chem. Phys. 20 28105Google Scholar

    [20]

    Rey M M, Chizhmakova I S, Nikitin A V, Tyuterev V G 2021 Phys. Chem. Chem. Phys. 23 12115Google Scholar

    [21]

    Champion J P, Loëte M, Pierre G 1992 Spectroscopy of the Earth's Atmosphere and Interstellar Medium (San Diego: Academic Press) pp339–422

    [22]

    Boudon V, Champion J P, Gabard T, et al. 2004 J. Mol. Spectrosc. 228 620Google Scholar

    [23]

    Wenger C, Boudon V, Rotger M, Sanzharov J P, Champion J P 2008 J. Mol. Spectrosc. 251 102Google Scholar

  • [1] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比. 物理学报, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] 李响, 刘云, 朱天鑫, 段传喜. Ar-D2O复合物在D2O弯曲振动模附近的新振转子带. 物理学报, 2023, 72(1): 013401. doi: 10.7498/aps.72.20221728
    [3] 李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰. BCl3同位素分离中二聚体的浓度. 物理学报, 2022, 71(24): 243401. doi: 10.7498/aps.71.20221517
    [4] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析. 物理学报, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [5] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [6] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [7] 刘丹丹, 黄印博, 孙宇松, 卢兴吉, 曹振松. 对流层顶高对拉萨地区温室气体柱浓度反演的影响. 物理学报, 2020, 69(13): 130201. doi: 10.7498/aps.69.20191431
    [8] 孙明国, 马宏亮, 刘强, 曹振松, 王贵师, 刘锟, 黄印博, 高晓明, 饶瑞中. 2.0 μm附近模拟呼吸气体中13CO2/12CO2同位素丰度的高精度实时在线测量. 物理学报, 2018, 67(6): 064206. doi: 10.7498/aps.67.20171861
    [9] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究. 物理学报, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [10] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [11] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [12] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [13] 李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清. 温室气体及碳同位素比值红外光谱反演精度的影响因素研究. 物理学报, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [14] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [15] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [16] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 钠分子同位素替代对低温下的He-Na2冷碰撞体系转动激发积分散射截面的影响. 物理学报, 2011, 60(2): 020304. doi: 10.7498/aps.60.020304
    [17] 李文峰, 令狐荣锋, 程新路, 杨向东. 氦同位素原子与钠分子碰撞转动激发积分散射截面的理论计算. 物理学报, 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [18] 张 莉, 朱正和, 杨本福, 龙兴贵, 罗顺忠. 氢同位素化合物TiH2,TiD2和TiT2的电子振动近似理论方法. 物理学报, 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [19] 陈正林, 张杰, 滕浩, 张军, 董全力. 飞秒激光分离同位素的模拟实验研究. 物理学报, 2002, 51(5): 1081-1086. doi: 10.7498/aps.51.1081
    [20] 马兴孝. 激光分离同位素的动力学. 物理学报, 1979, 28(1): 1-14. doi: 10.7498/aps.28.1
计量
  • 文章访问数:  4128
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2022-12-31
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回