搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论电子束在动态加载等离子体中的自聚焦传输

苏东 唐昌建

引用本文:
Citation:

相对论电子束在动态加载等离子体中的自聚焦传输

苏东, 唐昌建

Self-focus and transmission of relativistic electron beam in a dynamically loaded plasma

Su Dong, Tang Chang-Jian
PDF
导出引用
  • 为了进一步研究相对论电子束-离子通道辐射实验和理论的需要, 研究了相对论电子束入射中性气体以及通过碰撞电离动态加载等离子体实现对高能束流的自聚焦传输过程PIC(particle in cell) 模拟发现, 电子束电离出的离子背景能够实现对电子束的聚焦传输. 但是离子背景横向和纵向的不均匀性对束流的传输特性有显著影响. 在此基础之上, 提出了电子束在横向不均匀离子背景中传输的理论模型, 给出了束流的自聚焦条件.数值计算结果表明, 横向不均匀性会导致电子束的混合相位传输, 使得焦点附近内层电子可能跑到电子束外而被散焦损失, 这与PIC模拟的结果相符. 此外, PIC模拟还发现, 由于电子束的自聚焦, 在焦点处将电离出更多的离子而引起纵向不均匀性, 纵向不均匀性使得碰撞后的低能电子被俘获, 俘获电子效应会大幅降低电子束的传输效率. 但是俘获电子在纵向呈准周期分布, 对传输电子起到静电Wiggler场的作用, 可能实现静电Wiggler场的动态加载. 研究结果对于进一步研究电子束-等离子体系统的实验以及理论模型提出有一定的参考价值.
    In order to further study the radiation of the relativistic electron beam-ion channel experimentally and theoretically, the propagation of a relativistic electron beam in neutral gas and its self-focusing process are investigated. Particle in cell (PIC) simulation shows that the electron beam can self-focus and transmit the dynamically loaded plasma through impact ionization. The transverse and the longitude inhomogeneities of the ion background have significant effects on the transport properties of the electron beam. Base on these researches, a model of transmission of electron beam in a transverse non-uniform ion background is supposed. And the condition of self-focus is given. The numerical results show that the transverse inhomogeneity will lead to the mixed phase transmission of the electron beam, and the inner electrons can defocus near the focus point, which is consistent with the PIC simulation. The PIC simulation also shows that due to the self-focusing of the electron beam, there are much more ions to be ionized at the focus point, which will capture the lower-energy electrons after collision, the capture electron effect will significantly reduce the efficiency of the transmission of the electron beam. But the distribution of the captured electrons in the longitude direction is quasi-periodic, which acts as the electrostatic Wiggler field. These may achieve the dynamical loading of the electrostatic Wiggler field. These results give new clues to the further study of electron beam-plasma system in experiment and the establishment of theoretical models.
    • 基金项目: 科技部重大专项项目(批准号:2009GB105003) 资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009GB105003).
    [1]

    Bohm D, Gross E P 1949 Phys. Rev. 15 1864

    [2]

    Achiezer A J, Fainberg Y B 1950 Doklady AN USSR 73(I) 555

    [3]

    Zavjalov M A, Mitin L A, Perevodchikov V I, Tskhai V I, Shapiro A L 1994 IEEE Trans. Plasma Sci. 22 600

    [4]

    Goebel D M 1999 IEEE Trans. Plasma Sci. 27 800

    [5]

    Rouhani M H, Maraghechi 2006 Phys. Plasmas 13 083101

    [6]

    Wang B, Tang C J, liu P K 2006 Acta Phys. Sin. 55 5953 (in Chinese) [王斌, 唐昌建, 刘濮鲲 2006 物理学报 55 5953]

    [7]

    Su D, Tang C J, Liu P K 2007 Acta Phys. Sin. 56 2802 (in Chinese) [苏东, 唐昌建, 刘濮鲲 2007 物理学报 56 2802]

    [8]

    Su D, Tang C J 2009 Phys. Plasmas 16 053101

    [9]

    Mirzanejhad S, Sohbatzadeh Ghasemi F M, Sedaghat Z, Mahdian Z 2010 Phys. Plasma 17 053106

    [10]

    Wang Z Y, Tang C J 2010 Phys. Plasmas 17 083114

    [11]

    Bret A, Gremillet L, Dieckmann M E 2010 Phys. Plasmas 17 120501

    [12]

    Su D, Tang C J 2011 Phys. Plasmas 18 023104

    [13]

    Ng J S T , Chen P, Baldis H, BoltonP, Cline D, CraddockW, Crawford C, Decker F J, Field C, Fukui Y, Kumar V, Iverson R, King F, Kirby R E, Nakajima K, Noble R, Ogata A, Raimondi P, Walz D, Weidemann A W 2001 Phys. Rev. Lett. 87 244801

    [14]

    Barov N, Rosenzweig J B, Conde M E, Gai W, Power J G 2000 Phys. Rev. Special Topics Accel. Beams 3 011301

    [15]

    Amiranoff, Bernard D, Cros B, Jacquet F, Matthieussent G, Mine P, Mora P, Morillo J, Moulin F 1995 Phys. Rev. Lett. 74 5220

    [16]

    Lindberg R R, Charman A E, Wurtele J S 2004 Phys. Rev. Lett. 93 5

    [17]

    Song F L, Zhang Y H, Xiang F, Chang A B 2008 Acta Phys. Sin. 57 1807 (in Chinese) [宋法伦, 张永辉, 向飞, 常安碧 2008 物理学报 57 1807]

    [18]

    Goebel D M, Ponti E S, Feicht J R, Watkins R M 1996 Intense Microwave Pulses IV 69 2843

    [19]

    Zhou H F, Tang C J 2008 High Power Laser and Particle Beams 20 147 (in Chinese) [周华芳, 唐昌建 2008 强激光与粒子束 20 147]

    [20]

    Barker R J 4I?, ±D2 (è) 2005 High-power Microwave Sources and Technologies, First edition(Beijing: Tsinghua University Press)p256, 258 (in Chinese) [刘国志, 周传明 译2005 高功率微波源与技术 第一版(北京: 清华大学出版社)第256,258页]?]

  • [1]

    Bohm D, Gross E P 1949 Phys. Rev. 15 1864

    [2]

    Achiezer A J, Fainberg Y B 1950 Doklady AN USSR 73(I) 555

    [3]

    Zavjalov M A, Mitin L A, Perevodchikov V I, Tskhai V I, Shapiro A L 1994 IEEE Trans. Plasma Sci. 22 600

    [4]

    Goebel D M 1999 IEEE Trans. Plasma Sci. 27 800

    [5]

    Rouhani M H, Maraghechi 2006 Phys. Plasmas 13 083101

    [6]

    Wang B, Tang C J, liu P K 2006 Acta Phys. Sin. 55 5953 (in Chinese) [王斌, 唐昌建, 刘濮鲲 2006 物理学报 55 5953]

    [7]

    Su D, Tang C J, Liu P K 2007 Acta Phys. Sin. 56 2802 (in Chinese) [苏东, 唐昌建, 刘濮鲲 2007 物理学报 56 2802]

    [8]

    Su D, Tang C J 2009 Phys. Plasmas 16 053101

    [9]

    Mirzanejhad S, Sohbatzadeh Ghasemi F M, Sedaghat Z, Mahdian Z 2010 Phys. Plasma 17 053106

    [10]

    Wang Z Y, Tang C J 2010 Phys. Plasmas 17 083114

    [11]

    Bret A, Gremillet L, Dieckmann M E 2010 Phys. Plasmas 17 120501

    [12]

    Su D, Tang C J 2011 Phys. Plasmas 18 023104

    [13]

    Ng J S T , Chen P, Baldis H, BoltonP, Cline D, CraddockW, Crawford C, Decker F J, Field C, Fukui Y, Kumar V, Iverson R, King F, Kirby R E, Nakajima K, Noble R, Ogata A, Raimondi P, Walz D, Weidemann A W 2001 Phys. Rev. Lett. 87 244801

    [14]

    Barov N, Rosenzweig J B, Conde M E, Gai W, Power J G 2000 Phys. Rev. Special Topics Accel. Beams 3 011301

    [15]

    Amiranoff, Bernard D, Cros B, Jacquet F, Matthieussent G, Mine P, Mora P, Morillo J, Moulin F 1995 Phys. Rev. Lett. 74 5220

    [16]

    Lindberg R R, Charman A E, Wurtele J S 2004 Phys. Rev. Lett. 93 5

    [17]

    Song F L, Zhang Y H, Xiang F, Chang A B 2008 Acta Phys. Sin. 57 1807 (in Chinese) [宋法伦, 张永辉, 向飞, 常安碧 2008 物理学报 57 1807]

    [18]

    Goebel D M, Ponti E S, Feicht J R, Watkins R M 1996 Intense Microwave Pulses IV 69 2843

    [19]

    Zhou H F, Tang C J 2008 High Power Laser and Particle Beams 20 147 (in Chinese) [周华芳, 唐昌建 2008 强激光与粒子束 20 147]

    [20]

    Barker R J 4I?, ±D2 (è) 2005 High-power Microwave Sources and Technologies, First edition(Beijing: Tsinghua University Press)p256, 258 (in Chinese) [刘国志, 周传明 译2005 高功率微波源与技术 第一版(北京: 清华大学出版社)第256,258页]?]

计量
  • 文章访问数:  3323
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-23
  • 修回日期:  2011-05-18
  • 刊出日期:  2012-02-05

相对论电子束在动态加载等离子体中的自聚焦传输

  • 1. 四川大学高能量密度物理及技术教育部重点实验室, 成都 610064
    基金项目: 

    科技部重大专项项目(批准号:2009GB105003) 资助的课题.

摘要: 为了进一步研究相对论电子束-离子通道辐射实验和理论的需要, 研究了相对论电子束入射中性气体以及通过碰撞电离动态加载等离子体实现对高能束流的自聚焦传输过程PIC(particle in cell) 模拟发现, 电子束电离出的离子背景能够实现对电子束的聚焦传输. 但是离子背景横向和纵向的不均匀性对束流的传输特性有显著影响. 在此基础之上, 提出了电子束在横向不均匀离子背景中传输的理论模型, 给出了束流的自聚焦条件.数值计算结果表明, 横向不均匀性会导致电子束的混合相位传输, 使得焦点附近内层电子可能跑到电子束外而被散焦损失, 这与PIC模拟的结果相符. 此外, PIC模拟还发现, 由于电子束的自聚焦, 在焦点处将电离出更多的离子而引起纵向不均匀性, 纵向不均匀性使得碰撞后的低能电子被俘获, 俘获电子效应会大幅降低电子束的传输效率. 但是俘获电子在纵向呈准周期分布, 对传输电子起到静电Wiggler场的作用, 可能实现静电Wiggler场的动态加载. 研究结果对于进一步研究电子束-等离子体系统的实验以及理论模型提出有一定的参考价值.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回