搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚禁带光照对CdZnTe晶体中晶界电场分布的影响

陈伟龙 郭榕榕 仝钰申 刘莉莉 周圣岚 林金海

引用本文:
Citation:

亚禁带光照对CdZnTe晶体中晶界电场分布的影响

陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海

Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals

Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai
PDF
HTML
导出引用
  • 晶界是限制CdZnTe核辐射成像探测器大面积应用的主要缺陷之一. 为了探究改善晶界附近电场分布特性的方式, 本文采用Silvaco TCAD从理论上研究了亚禁带光照对于含晶界CdZnTe探测器内电场分布的影响. 仿真结果表明, 在无偏压下, 亚禁带光照能使得晶界势垒降低, 从而减小对载流子传输的阻碍作用. 在外加偏压下, 亚禁带光照使得晶界引起的电场死区消失, 使其电场分布趋向于线性分布. 同时研究了不同波长和不同强度的亚禁带光照对于晶界电场分布的影响, 结果表明光强低于1×10–9 W/cm2时, 亚禁带光照对于CdZnTe晶体的电场无调节作用. 而在波长850 nm, 光强1×10–7 W/cm2的亚禁带光照下, 实现了更平坦地电场分布, 因此可有效地提高器件的载流子收集效率. 仿真结果为调节晶界电场分布提供了理论指导.
    Grain boundary is one of the main defects, limiting the large-area application of CdZnTe nuclear radiation imaging detectors. In order to explore the ways to improve the electric field distribution properties near grain boundary, the effect of sub-bandgap illumination on the electric field distribution in CdZnTe detector with grain boundary is studied by Silvaco TCAD simulation technique. The grain boundary potential barrier and electric field dead zone are found in simulation results that significantly affect the carrier transport process in CdZnTe detector. The electric field dead zone caused by the grain boundary disappears under the bias of sub-bandgap illumination. Thus the electric field distribution tends to be linear. Meanwhile, the effects of different wavelengths and intensities of sub-bandgap illumination on the electric field distribution at the grain boundary are also investigated. The results show that the electric field of CdZnTe is distorted by sub-bandgap illumination at an intensity lower than 1×10–9 W/cm2. In contrast, a flatter electric field distribution is achieved at a wavelength of 850 nm and an intensity of 1×10–7 W/cm2. The carriers can be transported by drifting, reducing the probability of being captured or recombined by defects during transport, thus improving the charge collection efficiency of the detector.In addition, the microscopic mechanism of the modulation of the electric field distribution by sub-bandgap illumination and the energy band model of CdZnTe crystal containing grain boundary are proposed. Owing to the existence of the grain boundary, two space charge regions are formed near the grain boundary. The energy band at the grain boundary is bent upward. Meanwhile, the metal-semiconductor contact forms a Schottky barrier, and the energy band near the electrode is bent upward. When the bias voltage is applied, the energy band structure of the CdZnTe tends to tilt from the cathode to the anode. The sub-bandgap illumination can lower the energy band barrier at the grain boundary and regulate the energy band on both sides of the grain boundary. It is believed that this discussion will also make some contributions to understanding of the effects of illumination and grain boundary in other types of optoelectronic devices, especially the applications of thin films in solar cells and detectors.
      通信作者: 郭榕榕, guorr2020@163.com
    • 基金项目: 福建省自然科学基金(批准号:2020J05239)和国家自然科学基金青年科学基金(批准号:51702271)资助的课题.
      Corresponding author: Guo Rong-Rong, guorr2020@163.com
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05239) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51702271).
    [1]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 40902Google Scholar

    [2]

    Kathalingam A, Valanarasu S, Ramesh S, Kim H S, Kim H S 2021 Sol. Energy. 224 923Google Scholar

    [3]

    李颖锐, 吴森, 郭玉, 席守智, 符旭, 查钢强, 介万奇 2019 红外与激光工程 48 1016001Google Scholar

    Li Y R, Wu S, Guo Y, Xi S Z, Fu X, Zha G Q, Jie W Q 2019 Infrared Laser Eng. 48 1016001Google Scholar

    [4]

    Abbene L, Principato F, Gerardi G, Buttacavoli A, Cascio D, Bettelli M, Amade N S, Seller P, Veale M, Fox O, Sawhney K, Zanettini S, Tomarchio E, Zappettini A 2020 J. Synchrotron Radiat. 27 319Google Scholar

    [5]

    Gao X, Sun H, Yang D, Wangyang P, Zhang C, Zhu X 2020 Vacuum 183 109855Google Scholar

    [6]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [7]

    Carvalho A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [8]

    孙士文, 隋淞印, 何力, 周昌鹤, 虞慧娴, 徐超 2014 红外技术 36 588Google Scholar

    Sun S W, Sui S Y, Li H E, Zhou C H, Yu H X, Xu C 2014 IR. Tech. 36 588Google Scholar

    [9]

    Parker B H, Stahle C M, Roth D, Babu S, Tueller J 2001 Proc. SPIE. 4507 68Google Scholar

    [10]

    Zeng D M, Jie W Q, Wang T, Zhou H 2009 J. Cryst. Growth 311 4414Google Scholar

    [11]

    Markunas J K, Almeida L A, Jacobs R N, Pellegrino J, Qadri S B, Mahadik N, Sanghera J 2010 J. Electron. Mater 39 738Google Scholar

    [12]

    Bolotnikov A E, Babalola S O, Camarda G S, et al. 2009 IEEE Trans. Nucl. Sci. 56 1775Google Scholar

    [13]

    Li W, Tkaczyk J E, Andreini K W, Cui J, Zhang T, Williams Y, Harding K G, Chen H, Bindley G, Matyi R J 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, October 24–November 1, 2009 p1658

    [14]

    Dong J P, Jie W Q, Yu J Y, Guo R R, Teichert C, Gradwohl K P, Zhang B B, Luo X X, Xi S Z, Xu Y D 2018 Chin. Phys. B. 27 117202Google Scholar

    [15]

    Prokesch M, Szeles C 2010 US Patent 20100078558 A1

    [16]

    Ivanov V, Dorogov P, Loutchanski A 2011 International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications Ghent, Belgium, June 6–9, 2011 p1

    [17]

    Washington A L, Teague L C, Duff M C, Burger A, Groza M, Buliga V 2011 J. Appl. Phys 110 073708Google Scholar

    [18]

    Sik O, Grmela L, Elhadidy H, et al. 2013 J. Instrum. 8 C06005Google Scholar

    [19]

    Zhang Y Q, Fu L 2018 Mater. Sci. Forum 922 40Google Scholar

    [20]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204Google Scholar

    [21]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701Google Scholar

    [22]

    Zhou Y M, He Y G, Lu A X, Wan Q 2009 Chin. Phys. B 18 3966Google Scholar

    [23]

    Kong H S, Lee C 1995 J. Appl. Phys. 78 6122Google Scholar

    [24]

    Kumari K, Avasthi S 2017 IEEE 44th Photovoltaic Specialists Conference Washington, USA, June 25–30, 2017 p251

    [25]

    Hossain F M, Nishii J, Takagi S, Sugiharad T, Ohtomo A, Fukumura T, Koinuma H, Ohno H, Kawasaki M 2004 Phys. E 21 911Google Scholar

    [26]

    Zhang A, Zhao X R, Duan L B, Liu J M, Zhao J L 2011 Chin. Phys. B 20 057201Google Scholar

    [27]

    Kim K H, Na Y H, Park Y J, Jung T R, Kim S U, Hong J K 2004 IEEE Trans. Nucl. Sci. 51 3094Google Scholar

    [28]

    Kim K H, Ahn S Y, An S Y, Hong J K, Yi Y, Kim S U 2007 Curr Appl. Phys. 7 296Google Scholar

    [29]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211Google Scholar

    [30]

    Hjelt K, Juvonen M, Tuomi T, Nenonen S, Eissler E E, Bavdaz M 1997 Phys. Status Solidi. 162 747Google Scholar

    [31]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [32]

    Cola A, Farella I, Anni M, Martucci M C 2012 IEEE Trans. Nucl. Sci 59 1569Google Scholar

    [33]

    Montmorillon L A D, Delaye P, Launay J C, Roosen G 1995 Opt. Mater. 4 233Google Scholar

    [34]

    Marple D T F 1964 J. Appl. Phys. 35 539Google Scholar

    [35]

    Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L, James R B 2001 Mater. Sci. Eng. R 32 103Google Scholar

    [36]

    Hsieh Y K, Card H C 1989 J. Appl. Phys. 65 2409Google Scholar

    [37]

    Keevers M J, Green M A 1994 J. Appl. Phys. 75 4022Google Scholar

    [38]

    徐凌燕 2014 博士学位论文 (西安: 西北工业大学)

    Xu L Y 2014 Ph. D. Dissertation (Xian: Northwestern Polytechnical University)

  • 图 1  Au/CdZnTe/Au器件结构图

    Fig. 1.  Au/CdZnTe/Au device structure schematic.

    图 2  无偏压下有无光照的Au/CdZnTe/Au器件仿真结果 (a)电子浓度分布; (b)空间电荷分布; (c)电场分布; (d)Au/CdZnTe/Au能带结构图

    Fig. 2.  Simulation results of Au/CdZnTe/Au device with and without illumination under unbiased voltage: (a) Electron concentration distribution; (b) space charge distribution; (c) electric field distribution; (d) energy band structure diagram of Au/CdZnTe/Au.

    图 3  100 V偏压下有无光照的Au/CdZnTe/Au器件仿真结果 (a)电场分布; (b)空间电荷分布; (c)正空间电荷分布; (d) 深施主电离密度; (e) SRH模型[36-37]

    Fig. 3.  Simulation results of Au/CdZnTe/Au device with and without illumination under 100 V bias voltage: (a) Electric field distribution; (b) space charge distribution; (c) positive space charge distribution; (d) deep donor ionization density; (e) SRH model[36-37]

    图 4  100 V偏压下的Au/CdZnTe/Au器件仿真结果 (a)不同波长的亚禁带光照下电场分布; (b) 不同光强的亚禁带光照下电场分布

    Fig. 4.  Simulation results of Au/CdZnTe/Au device under 100 V bias voltage: (a) Electric field distribution under sub-bandgap illumination with different wavelengths; (b) electric field distribution under sub-bandgap illumination with different intensities.

    图 5  Au/CdZnTe/Au器件有无光照的能带模型 (a)无偏压下无光照能带模型; (b)无偏压下有光照能带模型 (c) 外加偏压下无光照能带模型(d)外加偏压下有光照能带模型

    Fig. 5.  Energy band model of Au/CdZnTe/Au device with and without illumination: (a) Energy band model without illumination under unbiased voltage; (b) energy band model with illumination under unbiased voltage ;(c) energy band model without illumination under applied bias voltage; (d) energy band model with illumination under applied bias voltage.

    表 1  CdZnTe晶体的基本参数[35]

    Table 1.  Basic parameters of CdZnTe crystal[35].

    ParametersValueParametersValue
    Band gap/eV1.6Dielectric constant10.9
    Conduction band density/cm–39.14×1017Optical recombination rate/(cm3·s–1)1.5×10–10
    Valence band density/cm–35.19×1018Electronic auger coefficient/(cm6·s–1)5×10–30
    Electron mobility/cm2/(V·s)1000Hole Auger coefficient/(cm6·s–1)1×10–31
    Hole mobility/cm2/(V·s)100Acceptor band tail state/(cm–3·eV–1)7.5×1014
    Donor band tail state/(cm–3·eV–1)7.5×1014
    下载: 导出CSV

    表 2  CdZnTe晶体基体能级的基本信息[21]

    Table 2.  Basic information of the energy levels in the CdZnTe crystal matrix[21].

    Level position
    /eV
    TypeDensity
    /cm–3
    Electron capture cross section/cm2Hole capture cross section/cm2
    EV+0.86Donor5×10113×10–143×10–15
    下载: 导出CSV

    表 3  CdZnTe晶体晶界能级的基本信息[27-30]

    Table 3.  Basic information of energy levels in the grain boundary of CdZnTe crystal[27-30]

    Level
    position
    /eV
    TypeDensity
    /cm–3
    Electron
    capture cross
    section/cm2
    Hole capture
    cross section/cm2
    EC – 0.10Donor1×10121.2×10–151.2×10–16
    EV + 0.14Acceptor1×10122.5×10–152.5×10–16
    EV + 0.75Acceptor5×10123×10–143×10–15
    下载: 导出CSV

    表 4  890 nm亚禁带光照参数[31-34]

    Table 4.  Basic parameters of 890 nm sub-bandgap illumination[31-34].

    Wavelength/nmExtinction coefficient kRefractive index nAbsorption coefficient/cm–1
    8901.417×10–42.919610
    下载: 导出CSV

    表 5  不同波长的亚禁带光照参数[31-34]

    Table 5.  Basic parameters of different wavelengths sub-bandgap illumination[31-34].

    Wavelength/nmExtinction coefficient kRefractive index/nAbsorption coefficient/cm–1
    8502.707×10–42.951140
    8901.417×10–42.919610
    9403.540×10–52.87965
    下载: 导出CSV
  • [1]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 40902Google Scholar

    [2]

    Kathalingam A, Valanarasu S, Ramesh S, Kim H S, Kim H S 2021 Sol. Energy. 224 923Google Scholar

    [3]

    李颖锐, 吴森, 郭玉, 席守智, 符旭, 查钢强, 介万奇 2019 红外与激光工程 48 1016001Google Scholar

    Li Y R, Wu S, Guo Y, Xi S Z, Fu X, Zha G Q, Jie W Q 2019 Infrared Laser Eng. 48 1016001Google Scholar

    [4]

    Abbene L, Principato F, Gerardi G, Buttacavoli A, Cascio D, Bettelli M, Amade N S, Seller P, Veale M, Fox O, Sawhney K, Zanettini S, Tomarchio E, Zappettini A 2020 J. Synchrotron Radiat. 27 319Google Scholar

    [5]

    Gao X, Sun H, Yang D, Wangyang P, Zhang C, Zhu X 2020 Vacuum 183 109855Google Scholar

    [6]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [7]

    Carvalho A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [8]

    孙士文, 隋淞印, 何力, 周昌鹤, 虞慧娴, 徐超 2014 红外技术 36 588Google Scholar

    Sun S W, Sui S Y, Li H E, Zhou C H, Yu H X, Xu C 2014 IR. Tech. 36 588Google Scholar

    [9]

    Parker B H, Stahle C M, Roth D, Babu S, Tueller J 2001 Proc. SPIE. 4507 68Google Scholar

    [10]

    Zeng D M, Jie W Q, Wang T, Zhou H 2009 J. Cryst. Growth 311 4414Google Scholar

    [11]

    Markunas J K, Almeida L A, Jacobs R N, Pellegrino J, Qadri S B, Mahadik N, Sanghera J 2010 J. Electron. Mater 39 738Google Scholar

    [12]

    Bolotnikov A E, Babalola S O, Camarda G S, et al. 2009 IEEE Trans. Nucl. Sci. 56 1775Google Scholar

    [13]

    Li W, Tkaczyk J E, Andreini K W, Cui J, Zhang T, Williams Y, Harding K G, Chen H, Bindley G, Matyi R J 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, October 24–November 1, 2009 p1658

    [14]

    Dong J P, Jie W Q, Yu J Y, Guo R R, Teichert C, Gradwohl K P, Zhang B B, Luo X X, Xi S Z, Xu Y D 2018 Chin. Phys. B. 27 117202Google Scholar

    [15]

    Prokesch M, Szeles C 2010 US Patent 20100078558 A1

    [16]

    Ivanov V, Dorogov P, Loutchanski A 2011 International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications Ghent, Belgium, June 6–9, 2011 p1

    [17]

    Washington A L, Teague L C, Duff M C, Burger A, Groza M, Buliga V 2011 J. Appl. Phys 110 073708Google Scholar

    [18]

    Sik O, Grmela L, Elhadidy H, et al. 2013 J. Instrum. 8 C06005Google Scholar

    [19]

    Zhang Y Q, Fu L 2018 Mater. Sci. Forum 922 40Google Scholar

    [20]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204Google Scholar

    [21]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701Google Scholar

    [22]

    Zhou Y M, He Y G, Lu A X, Wan Q 2009 Chin. Phys. B 18 3966Google Scholar

    [23]

    Kong H S, Lee C 1995 J. Appl. Phys. 78 6122Google Scholar

    [24]

    Kumari K, Avasthi S 2017 IEEE 44th Photovoltaic Specialists Conference Washington, USA, June 25–30, 2017 p251

    [25]

    Hossain F M, Nishii J, Takagi S, Sugiharad T, Ohtomo A, Fukumura T, Koinuma H, Ohno H, Kawasaki M 2004 Phys. E 21 911Google Scholar

    [26]

    Zhang A, Zhao X R, Duan L B, Liu J M, Zhao J L 2011 Chin. Phys. B 20 057201Google Scholar

    [27]

    Kim K H, Na Y H, Park Y J, Jung T R, Kim S U, Hong J K 2004 IEEE Trans. Nucl. Sci. 51 3094Google Scholar

    [28]

    Kim K H, Ahn S Y, An S Y, Hong J K, Yi Y, Kim S U 2007 Curr Appl. Phys. 7 296Google Scholar

    [29]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211Google Scholar

    [30]

    Hjelt K, Juvonen M, Tuomi T, Nenonen S, Eissler E E, Bavdaz M 1997 Phys. Status Solidi. 162 747Google Scholar

    [31]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [32]

    Cola A, Farella I, Anni M, Martucci M C 2012 IEEE Trans. Nucl. Sci 59 1569Google Scholar

    [33]

    Montmorillon L A D, Delaye P, Launay J C, Roosen G 1995 Opt. Mater. 4 233Google Scholar

    [34]

    Marple D T F 1964 J. Appl. Phys. 35 539Google Scholar

    [35]

    Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L, James R B 2001 Mater. Sci. Eng. R 32 103Google Scholar

    [36]

    Hsieh Y K, Card H C 1989 J. Appl. Phys. 65 2409Google Scholar

    [37]

    Keevers M J, Green M A 1994 J. Appl. Phys. 75 4022Google Scholar

    [38]

    徐凌燕 2014 博士学位论文 (西安: 西北工业大学)

    Xu L Y 2014 Ph. D. Dissertation (Xian: Northwestern Polytechnical University)

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [3] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [4] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [5] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [8] 王海燕, 高雪云, 任慧平, 张红伟, 谭会杰. 稀土La在-Fe中占位倾向及对晶界影响的第一性原理研究. 物理学报, 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [9] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [10] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [11] 赵昕, 张万荣, 金冬月, 付强, 陈亮, 谢红云, 张瑜洁. 基区Ge组分分布对SiGe HBTs热学特性的影响. 物理学报, 2012, 61(13): 134401. doi: 10.7498/aps.61.134401
    [12] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [13] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [14] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [15] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [16] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响. 物理学报, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [17] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [18] 祝祖送, 林璇英, 余云鹏, 林揆训, 邱桂明, 黄 锐, 余楚迎. 用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究. 物理学报, 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [19] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  4067
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-07-07
  • 上网日期:  2022-11-04
  • 刊出日期:  2022-11-20

/

返回文章
返回