搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高k介质在新型半导体器件中的应用

黄力 黄安平 郑晓虎 肖志松 王 玫

引用本文:
Citation:

高k介质在新型半导体器件中的应用

黄力, 黄安平, 郑晓虎, 肖志松, 王 玫

Application of high-k dielectrics in novel semiconductor devices

Huang Li, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei
PDF
导出引用
  • 当CMOS器件特征尺寸缩小到45 nm以下, SiO2作为栅介质材料已经无法满足性能和功耗的需要, 用高k材料替代SiO2是必然选择. 然而, 由于高k材料自身存在局限性, 且与器件其他部分的兼容性差, 产生了很多新的问题如界面特性差、阈值电压增大、迁移率降低等. 本文简要回顾了高k栅介质在平面型硅基器件中应用存在的问题以及从材料、结构和工艺等方面采取的解决措施, 重点介绍了高k材料在新型半导体器件中的应用, 并展望了未来的发展趋势.
    As the feature size of MOSFET scales beyond 45 nm, SiO2 as gate dielectric fails to meet the performance requirement because of the high gate oxide leakage current. It is necessary to replace SiO2 with high-k materials. However, high-k materials as gate dielectric have some limitations and are not expectedly compatible with the conventional structure, inducing new challenges such as bad interfacial quality, increased threshold voltage, mobility degradation, etc. In this paper we review the problems encountered in the introduction of high-k gate dielectric into planar devices and the solutions in terms of material, device structure and process integration. Some novel applications of high-k materials in new devices and the future trend are also reviewed.
    • 基金项目: 国家自然科学基金(批准号: 51172009, 51172013和11074020) 和教育部新世纪优秀人才计划(NCET-08-0029)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172009, 51172013, 11074020), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0029).
    [1]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [2]

    Zheng X H, Huang A P, Yang Z C, Xiao Z S, Wang M, Cheng G A 2011 Acta Phys. Sin. 60 017702 (in Chinese) [郑晓虎, 黄安平, 杨智超, 肖志松, 王 玫, 程国安 2011 物理学报 60 017702]

    [3]

    Weng Y, Wang H 2008 Semiconductor Technology 33 1 (in Chinese) [翁 妍, 汪 辉 2008 半导体技术 33 1]

    [4]

    Fischetti M V, Neumayer D A, Cartier E A 2001 J. Appl. Phys. 90 4587

    [5]

    Weber O, Casse M, Thevenod L, Ducroquet F, Ernst T, Deleonibus S 2006 Solid-State Electron. 50 626

    [6]

    Yang Z C, Huang A P, Xiao Z S 2010 Physics 39 113 (in Chinese) [杨智超, 黄安平, 肖志松 2010 物理 39 113]

    [7]

    Datta S, Dewey G, Doczy M, Doyle B S, Jin B, Kavalieros J, Kotlyer R, Metz M, Zelick N, Chau R 2003 IEEE International Electron Devices Meeting, Washington, D.C., December 08-10, 2003 p653

    [8]

    Maitra K, Frank M M, Narayanan V, Misra V, Cartier E A 2007 J. Appl. Phys. 102 114507

    [9]

    Weber O, Damlencourt J F, Andrieu F, Ducroquet F, Ernst T, Hartmann J M, Papon A M, Renault O, Guillaumot B, Deleonibus S 2006 IEEE Trans. Electron Devices 53 449

    [10]

    Lin Y X, Ozturk M C, Chen B, Rhee S J, Lee J C, Misra V 2005 Appl. Phys. Lett. 87 071903

    [11]

    Johansson M, Yousif M Y A, Lundgren P, Bengtsson S, Sundqvist J, Harsta A, Radamson H H 2003 Semicond. Sci. Technol. 18 820

    [12]

    Chung K B, Lucovsky G, Lee W J, Cho M H, Jeon H 2009 Appl. Phys. Lett. 94 042907

    [13]

    Chau R, Datta S, Doczy M, Doyle B, Kavalieros J, Metz M 2004 IEEE Electron Dev. Lett. 25 408

    [14]

    Hisamoto D, Lee W C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King T J, Bokor J, Hu C M 2000 IEEE Trans. Electron Devices 47 2320

    [15]

    Agrawal S, Fossum J G 2008 IEEE Trans. Electron Devices 55 1714

    [16]

    Manoj C R, Rao V R 2007 IEEE Electron Dev. Lett. 28 295

    [17]

    Shishir R S, Ferry D K 2009 J. Phys.: Condens. Matter 21 232204

    [18]

    Moon J S, Curtis D, Hu M, Wong D, McGuire C, Campbell P M, Jernigan G, Tedesco J L, VanMil B, Myers-Ward R, Eddy C, Gaskill D K 2009 IEEE Electron Dev. Lett. 30 650

    [19]

    Liao L, Bai J W, Cheng R, Lin Y C, Jiang S, Huang Y, Duan X F 2010 Nano Lett. 10 1917

    [20]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [21]

    Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R 2011 Nanotechnology 22 254001

    [22]

    Lee H Y, Chen P S, Wang C C, Maikap S, Tzeng P J, Lin C H, Lee L S 2007 Jpn. J. Appl. Phys. 46 2175

    [23]

    Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 IEEE International Electron Devices Meeting, San Francisco CA, December 15-17, 2008 p1

    [24]

    Sun J, Lind E, Maximov I, Xu H Q 2011 IEEE Electron Dev. Lett. 32 131

    [25]

    Yan X B, Xia Y D, Xu H N, Gao X, Li H T, Li R, Yin J, Liu Z G 2010 Appl. Phys. Lett. 97 112101

    [26]

    Menke T, Meuffels P, Dittmann R, Szot K, Waser R 2009 J. Appl. Phys. 105 066104

    [27]

    Driscoll T, Kim H-T, Chae B-G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [28]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [29]

    Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G, Williams R S 2009 Nano Lett. 9 3640

    [30]

    Pershin Y V, Ventra M D 2010 IEEE Trans. Circuits Syst. I, Reg. Papers 57 1857

  • [1]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [2]

    Zheng X H, Huang A P, Yang Z C, Xiao Z S, Wang M, Cheng G A 2011 Acta Phys. Sin. 60 017702 (in Chinese) [郑晓虎, 黄安平, 杨智超, 肖志松, 王 玫, 程国安 2011 物理学报 60 017702]

    [3]

    Weng Y, Wang H 2008 Semiconductor Technology 33 1 (in Chinese) [翁 妍, 汪 辉 2008 半导体技术 33 1]

    [4]

    Fischetti M V, Neumayer D A, Cartier E A 2001 J. Appl. Phys. 90 4587

    [5]

    Weber O, Casse M, Thevenod L, Ducroquet F, Ernst T, Deleonibus S 2006 Solid-State Electron. 50 626

    [6]

    Yang Z C, Huang A P, Xiao Z S 2010 Physics 39 113 (in Chinese) [杨智超, 黄安平, 肖志松 2010 物理 39 113]

    [7]

    Datta S, Dewey G, Doczy M, Doyle B S, Jin B, Kavalieros J, Kotlyer R, Metz M, Zelick N, Chau R 2003 IEEE International Electron Devices Meeting, Washington, D.C., December 08-10, 2003 p653

    [8]

    Maitra K, Frank M M, Narayanan V, Misra V, Cartier E A 2007 J. Appl. Phys. 102 114507

    [9]

    Weber O, Damlencourt J F, Andrieu F, Ducroquet F, Ernst T, Hartmann J M, Papon A M, Renault O, Guillaumot B, Deleonibus S 2006 IEEE Trans. Electron Devices 53 449

    [10]

    Lin Y X, Ozturk M C, Chen B, Rhee S J, Lee J C, Misra V 2005 Appl. Phys. Lett. 87 071903

    [11]

    Johansson M, Yousif M Y A, Lundgren P, Bengtsson S, Sundqvist J, Harsta A, Radamson H H 2003 Semicond. Sci. Technol. 18 820

    [12]

    Chung K B, Lucovsky G, Lee W J, Cho M H, Jeon H 2009 Appl. Phys. Lett. 94 042907

    [13]

    Chau R, Datta S, Doczy M, Doyle B, Kavalieros J, Metz M 2004 IEEE Electron Dev. Lett. 25 408

    [14]

    Hisamoto D, Lee W C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King T J, Bokor J, Hu C M 2000 IEEE Trans. Electron Devices 47 2320

    [15]

    Agrawal S, Fossum J G 2008 IEEE Trans. Electron Devices 55 1714

    [16]

    Manoj C R, Rao V R 2007 IEEE Electron Dev. Lett. 28 295

    [17]

    Shishir R S, Ferry D K 2009 J. Phys.: Condens. Matter 21 232204

    [18]

    Moon J S, Curtis D, Hu M, Wong D, McGuire C, Campbell P M, Jernigan G, Tedesco J L, VanMil B, Myers-Ward R, Eddy C, Gaskill D K 2009 IEEE Electron Dev. Lett. 30 650

    [19]

    Liao L, Bai J W, Cheng R, Lin Y C, Jiang S, Huang Y, Duan X F 2010 Nano Lett. 10 1917

    [20]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [21]

    Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R 2011 Nanotechnology 22 254001

    [22]

    Lee H Y, Chen P S, Wang C C, Maikap S, Tzeng P J, Lin C H, Lee L S 2007 Jpn. J. Appl. Phys. 46 2175

    [23]

    Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 IEEE International Electron Devices Meeting, San Francisco CA, December 15-17, 2008 p1

    [24]

    Sun J, Lind E, Maximov I, Xu H Q 2011 IEEE Electron Dev. Lett. 32 131

    [25]

    Yan X B, Xia Y D, Xu H N, Gao X, Li H T, Li R, Yin J, Liu Z G 2010 Appl. Phys. Lett. 97 112101

    [26]

    Menke T, Meuffels P, Dittmann R, Szot K, Waser R 2009 J. Appl. Phys. 105 066104

    [27]

    Driscoll T, Kim H-T, Chae B-G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [28]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [29]

    Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G, Williams R S 2009 Nano Lett. 9 3640

    [30]

    Pershin Y V, Ventra M D 2010 IEEE Trans. Circuits Syst. I, Reg. Papers 57 1857

  • [1] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [2] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [3] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [4] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [5] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [7] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [8] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [10] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [11] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [12] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [13] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [14] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [15] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [16] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [17] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [18] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [19] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  5198
  • PDF下载量:  1486
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-19
  • 修回日期:  2011-12-05
  • 刊出日期:  2012-07-05

高k介质在新型半导体器件中的应用

  • 1. 北京航空航天大学电子信息工程学院, 北京 100191;
  • 2. 北京航空航天大学物理科学与核能工程学院, 北京 100191
    基金项目: 国家自然科学基金(批准号: 51172009, 51172013和11074020) 和教育部新世纪优秀人才计划(NCET-08-0029)资助的课题.

摘要: 当CMOS器件特征尺寸缩小到45 nm以下, SiO2作为栅介质材料已经无法满足性能和功耗的需要, 用高k材料替代SiO2是必然选择. 然而, 由于高k材料自身存在局限性, 且与器件其他部分的兼容性差, 产生了很多新的问题如界面特性差、阈值电压增大、迁移率降低等. 本文简要回顾了高k栅介质在平面型硅基器件中应用存在的问题以及从材料、结构和工艺等方面采取的解决措施, 重点介绍了高k材料在新型半导体器件中的应用, 并展望了未来的发展趋势.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回