搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究

谢金辰 陶曦 续瑞瑞 田源 邢康 葛智刚 牛一斐

引用本文:
Citation:

基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究

谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐

Outliers Identification of the Experimental (γ, n) Reaction Cross Section via Variational Autoencoder

XIE Jinchen, TAO Xi, XU Ruirui, TIAN Yuan, XING Kang, GE Zhigang, NIU Yifei
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 伽马单中子出射反应截面是核工程输运计算中的重要参数,部分核素的(γ,n)反应测量因来自不同实验室而分歧明显.本工作基于变分自编码器方法,针对原子核质量数在29到207区域的伽马单中子出射反应截面实验测量数据开展分析,有效识别多家测量之间的离群点.首先,研究变分自编码器方法,建立伽马单中子光核测量数据离群点识别网络;其次,对29Si、54Fe、63Cu、141Pr、181Ta、206Pb和207Pb的29家多能点测量数据进行离群点识别;最后,计算离群点识别前后的实验数据与国际原子能机构光核评价数据评价库(IAEA-2019-PD)评价值之间的偏差,检测变分自编码器的分析效果.经研究表明,变分自编码器方法可以有效识别(γ,n)反应实验测量离群点,其中54Fe、63Cu、181Ta、206Pb和207Pb的伽马单中子出射反应截面与IAEA-2019-PD评价结果一致性更高,验证了该方法在核数据研究中的应用潜力.
    The (γ, n) cross-section is important in nuclear engineering transport calculations. The measurements of the (γ, n) reaction for some isotopes show significant discrepancies from different laboratories. Since experimental data analysis is the first tasks in nuclear data evaluation, identifying outlier data in measurements is crucial for improving the quality of nuclear data. Therefore, this work employs Variational AutoEncoder (VAE) approach to analyze experimental measurements of (γ, n) cross sections for nuclear mass from 29 to 207, aiming to provide more reliable experimental information for nuclear data evaluation.
    Based on the proton Z and nuclear mass A, we constructed a Variational AutoEncoder network designed for outliers identification in measurement of (γ, n). The silhouette coeffcient method and K-Means algorithm were used to perform clustering the latent variables of VAE. Subsequently, the experimental data with and without the outliers were compared with the IAEA-2019-PD to assess VAE in application of photoneutron measurements evaluation.
    The results demonstrate that VAE can effectively identify outliers in the measurements of (γ, n). After excluding outliers, the (γ, n) cross-section for 54Fe, 63Cu, 181Ta, 206Pb and 207Pb showed higher consistency with the IAEA-2019-PD evaluation results. However, 29Si and 141Pr deviated from the IAEA- 2019-PD evaluation results yet, which requires more analysis to the measurements itself in future.
    The Variational AutoEncoder method effectively identifies outliers and mines the latent structures in experimental data of (γ, n) reaction. It provides more reliable experimental information for nuclear data evaluation and validating the potential application of this method in nuclear data research. However, generalization capability of Variational AutoEncoder still needs further developed especially the issues with uneven energy distribution for various measurements.
  • [1]

    Chadwick M, Oblozinsky P, Blokhin A, Fukahori T, Han Y, Lee Y, Martins M, Mughabghab S, Varlamov V, Yu B, et al. 2000 Iaea Tech-Doc 1178

    [2]

    Obložinskỳ P 2002 J. Nucl. Sci. Technol. 3931

    [3]

    Dietrich S S, Berman B L 1988 At. Data Nucl. Data Tables 38199

    [4]

    Kawano T, Cho Y, Dimitriou P, Filipescu D, Iwamoto N, Plujko V, Tao X, Utsunomiya H, Varlamov V, Xu R, et al. 2020 Nucl. Data Sheets 163109

    [5]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91045002

    [6]

    He W, Li Q, Ma Y, Niu Z, Pei J, Zhang Y 2023 Sci. China Phys. Mech. Astron. 66282001

    [7]

    He W B, Ma Y G, Pang L G, Song H C, Zhou K 2023 Nucl. Sci. Tech. 3488

    [8]

    Bai J, Niu Z, Sun B, Niu Y 2021 Phys. Lett. B 815136147

    [9]

    Xing K, Sun X J, Xu R R, Zou F L, Hu Z H, Wang J M, Tao X, Sun X D, Tian Y, Niu Z M 2024 Phys. Lett. B 855138825

    [10]

    Li W, Liu L, Niu Z, Niu Y, Huang X 2024 Phys. Rev. C 109044616

    [11]

    Bardhan J, Mandal T, Mitra S, Neeraj C, Patra M 2024 Eur. Phys. J. Spec. Top. 1

    [12]

    Mitra S, Choi H, Liu S, Glatt R, Wendt K, Schunck N 2024 arXiv:2404.02332

    [13]

    Fox J M, Wendt K A 2024 arXiv:2403.16389

    [14]

    Kingma D P 2013 arXiv:1312.6114

    [15]

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, et al. 2014 Nucl. Data Sheets 120272

    [16]

    Higgins I, Matthey L, Pal A, Burgess C P, Glorot X, Botvinick M M, Mohamed S, Lerchner A 2017 ICLR (Poster) 3

    [17]

    Parzen E 1962 Ann. Math. Stat. 331065

    [18]

    Maas A L, Hannun A Y, Ng A Y, et al. 2013 Proc. icml 303

    [19]

    He K, Zhang X, Ren S, Sun J 2015 Proc. IEEE Int. Conf. Comput. Vis. 1026

    [20]

    Kingma D P 2014 arXiv:1412.6980

    [21]

    MacQueen J, et al. 1967 Proc. Fifth Berkeley Symp. Math. Stat. Prob. 1281

    [22]

    Rousseeuw P J 1987 J. Comput. Appl. Math. 2053

    [23]

    Fukuda K, Okabe S 1973 J. Phys. Soc. Jpn. 34315

    [24]

    Pywell R, Berman B, Kean P, Thompson M 1981 Nucl. Phys. A 369141

    [25]

    McNeill K, Pywell R, Berman B, Woodworth J, Thompson M, Jury J 1987 Phys. Rev. C 361621

    [26]

    Ratner B, Sergiyevsky A, Verbitsky S 1977 Nucl. Phys. A 28571

    [27]

    Katz L, Cameron A 1951 Can. J. Phys. 29518

    [28]

    Norbury J, Thompson M, Shoda K, Tsubota H 1978 Aust. J. Phys. 31471

    [29]

    Plaisir C, Hannachi F, Gobet F, Tarisien M, Aléonard M, Méot V, Gosselin G, Morel P, Morillon B 2012 Eur. Phys. J. A 4868

    [30]

    Sund R, Baker M, Kull L, Walton R 1968 Phys. Rev. 1761366

    [31]

    Dzhilavyan L, Kucher N 1979 Sov. J. Nucl. Phys. 30151

    [32]

    Berman A, Brown K 1954 Phys. Rev. 96

    [33]

    Scott M, Hanson A, Kerst D 1955 Phys. Rev. 100209

    [34]

    Owen D, Muirhead E, Spicer B 1968 Nucl. Phys. A 122177

    [35]

    Byerly Jr P R, Stephens W 1951 Phys. Rev. 8354

    [36]

    Martins M, Hayward E, Lamaze G, Maruyama X, Schima F, Wolynec E 1984 Phys. Rev. C 301855

    [37]

    Sund R, Verbinski V 1970 Phys. Rev. C 2

    [38]

    Utsunomiya H, Makinaga A, Goko S, Kaihori T, Akimune H, Yamagata T, Ohta M, Toyokawa H, Müller S, Lui Y W, et al. 2006 Phys. Rev. C 74025806

    [39]

    Cook B, Hutchinson D, Waring R, Bradford J, Johnson R, Griffn J 1966 Phys. Rev. 143730

    [40]

    Belyaev S, Semenov V 1991 Bull. Russ. Acad. Sci. Phys. 5566

    [41]

    Belyaev S, Kozin A, Nechkin A, Semenov S S, Semenko S 1985 Yad. Fiz 421050

    [42]

    Utsunomiya H, Akimune H, Goko S, Ohta M, Ueda H, Yamagata T, Yamasaki K, Ohgaki H, Toyokawa H, Lui Y W, et al. 2003 Phys. Rev. C 67015807

    [43]

    Goko S, Utsunomiya H, Goriely S, Makinaga A, Kaihori T, Hohara S, Akimune H, Yamagata T, Lui Y W, Toyokawa H, et al. 2006 Phys. Rev. Lett. 96192501

    [44]

    Kondo T, Utsunomiya H, Goriely S, Daoutidis I, Iwamoto C, Akimune H, Okamoto A, Yamagata T, Kamata M, Itoh O, et al. 2012 Phys. Rev. C 86014316

    [45]

    Birenbaum Y, Berant Z, Kahane S, Wolf A, Moreh R 1995 Phys. Rev. C 513496

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, doi: 10.7498/aps.73.20231980
    [2] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, doi: 10.7498/aps.73.20231477
    [3] 陈光临, 张志勇. 使用中间层受监督的自编码器探索蛋白质的构象空间. 物理学报, doi: 10.7498/aps.72.20231060
    [4] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, doi: 10.7498/aps.72.20221628
    [5] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, doi: 10.7498/aps.71.20220162
    [6] 王甜甜, 王慧, 朱艳春, 王丽嘉. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪. 物理学报, doi: 10.7498/aps.70.20210885
    [7] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, doi: 10.7498/aps.68.20190032
    [8] 王晓伟, 郭建友. 复动量格林函数方法对n-α散射研究. 物理学报, doi: 10.7498/aps.68.20182197
    [9] 高飞, 李腾, 童恒庆, 欧卓玲. 分数阶Willis环脑动脉瘤系统的混沌动力学分析与控制. 物理学报, doi: 10.7498/aps.65.230502
    [10] 邢永忠, 赵兴文, 郑玉明. 不变振幅的不同投影选择对核子自能与碰撞截面的影响. 物理学报, doi: 10.7498/aps.63.152101
    [11] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, doi: 10.7498/aps.62.173401
    [12] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, doi: 10.7498/aps.62.063202
    [13] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究. 物理学报, doi: 10.7498/aps.61.043404
    [14] 王晓璐, 令狐荣锋, 杨建会, 吕兵, 高涛, 杨向东. Ne同位素替代下Ne-HF碰撞截面的理论计算. 物理学报, doi: 10.7498/aps.61.093101
    [15] 鲁彦霞, 谢安平, 李小华, 向东, 路兴强, 李新霞, 黄千红. Cq+(q=14)与He,Ne,Ar碰撞的电子损失截面测量与研究. 物理学报, doi: 10.7498/aps.60.083401
    [16] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙. 类氦离子的KLL双电子复合过程的相对论理论研究. 物理学报, doi: 10.7498/aps.55.112
    [17] 丁英涛, 何 枫, 姚朝晖, 沈孟育, 王学芳. 变截面微管道内声速点位置及临界压比. 物理学报, doi: 10.7498/aps.53.2050
    [18] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, doi: 10.7498/aps.50.655
    [19] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, doi: 10.7498/aps.49.1639
    [20] 何善堉. 定跨度变截面梁的弯曲问题. 物理学报, doi: 10.7498/aps.11.37
计量
  • 文章访问数:  49
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回