搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复动量格林函数方法对n-α散射研究

王晓伟 郭建友

引用本文:
Citation:

复动量格林函数方法对n-α散射研究

王晓伟, 郭建友

Investigation of n-α scattering by combining complex momentum representation and Green’s function

Wang Xiao-Wei, Guo Jian-You
PDF
HTML
导出引用
  • 在复动量表象下引入格林函数, 建立了复动量格林函数方法. 把这种方法应用于n-α散射系统, 计算其散射相移. 提取n-α系统的共振态并研究共振态对能级密度、相移和散射截面的贡献. 在不引入任何非物理参数的前提下, 离散化薛定谔积分方程得到束缚态、共振态和连续谱. 通过分析散射态物理量可以更好地理解共振态以及非共振连续谱态. 在n-α系统中的成功应用, 证明了该方法的正确性.
    Nuclear scattering is a very important physical phenomenon in which the resonance state plays an important role. In order to study the two-body system n-α scattering, Green’s function is introduced under the complex momentum representation, so the complex momentum representation-Green’s function approach is established. This method is used to study the elastic scattering of n-α system. By extracting the resonances, it is found that the contributions of resonances in continuum level density, phase shift, and cross section are more important. In the case without introducing any non-physical parameters, it is very helpful to understand the resonant states and the non-resonance continuum states by analyzing the data of scattering states. In this work, we mainly study the p-wave scattering with the orbital angular momentum l = 1, where P1/2 is a wide resonance state and P3/2 is narrow resonance state. The study shows that the sharp resonance peak of p-wave scattering gives rather broad distribution to the scattering phase shift and the cross section of the n-α system. By comparison, we can see that the theoretical calculation results and experimental data are in good consistence.
      通信作者: 郭建友, jianyou@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11575002)资助的课题.
      Corresponding author: Guo Jian-You, jianyou@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575002).
    [1]

    Tanihata I 1996 J. Phys. G 22 157Google Scholar

    [2]

    Ryusuke S, Takayuki M, Kiyoshi K 2005 Prog. Theor. Phys. 113 1273Google Scholar

    [3]

    Kiyoshi K, Masayuki A 2014 Phys. Rev. C 89 034322Google Scholar

    [4]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [5]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Lett. 59 763Google Scholar

    [6]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [7]

    Taylor J R, Wiley J 1972 Scattering Theory: The Quantum Theory on Non-relativistic Collisions (New York: Inc. Mineola) pp204−207

    [8]

    Amos K, Canton L, Pisent G, Svenne J P, van der Knijff D 2003 Nucl. Phys. A 728 65Google Scholar

    [9]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [10]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [11]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [12]

    Shi M, Liu Q, Niu Z M, Gou J Y 2014 Phys. Rev. C 90 034319Google Scholar

    [13]

    Zhu Z L, Niu Z M, Li D P, Liu Q, Guo J Y 2014 Phys. Rev. C 89 034307Google Scholar

    [14]

    Liu Q, Guo J Y, Niu Z M, Chen S W 2012 Phys. Rev. C 86 054312Google Scholar

    [15]

    Wang H Y, Chang X U 2016 Nucl. Phys. Rev. 33 1

    [16]

    Jolly R K, Amos T M, Galonsky A 1973 Phys. Rev. C 7 1903Google Scholar

    [17]

    Brussel M K, Williams J H 1957 Phys. Rev. C 106 286Google Scholar

    [18]

    Hwang C F 1962 Phys. Rev. Lett. 9 104Google Scholar

    [19]

    May T H, Walter R L, Barschall H H 1963 Nucl. Phys. 45 17Google Scholar

    [20]

    Craddock M K 1963 Phys. Lett. 5 335Google Scholar

    [21]

    Barnard A C L, Jones C M, Weil J L 1964 Nucl. Phys. 50 604Google Scholar

    [22]

    Bunch S M, Forster H H, Kim C C 1964 Nucl. Phys. 53 241Google Scholar

    [23]

    Morgan G L 1968 Phys. Rev. 168 114Google Scholar

    [24]

    Garreta D, Sura J, Tarrats A 1969 Nucl. Phys. A 132 204Google Scholar

    [25]

    Goldstein N P, Held A, Stairs D G 1970 Can. J. Phys. 48 2629Google Scholar

    [26]

    Schwandt P, Clegg T B, Haeberli W 1971 Nucl. Phys. A 163 432Google Scholar

    [27]

    Bacher A D 1972 Phys. Rev. C 5 1147Google Scholar

    [28]

    Austin S M, Barschall H H, Shamu R E 1962 Phys. Rev. 126 1532Google Scholar

    [29]

    Shi X X, Shi M, Heng T H 2016 Phys. Rev. C 94 024302Google Scholar

    [30]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [31]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311Google Scholar

    [32]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [33]

    Shi M, Niu Z M, Liang H Z 2018 Phys. Rev. C 97 064301Google Scholar

    [34]

    Ali S, Bodmer A R 1966 Nucl. Phys. 80 99Google Scholar

    [35]

    Marquez L 1983 Phys. Rev. C 28 2525Google Scholar

    [36]

    Mohr P 1994 Z. Phys. A 349 339Google Scholar

    [37]

    Shlomo S 1992 Nucl. Phys. A 539 17Google Scholar

    [38]

    Levine R D 1969 Quantum Mechanics of Molecular Rate Processes (Oxford: Clarendon Press Oxford) pp101−106

    [39]

    Haberzettl H, Workman R 2007 Phys. Rev. C 76 058201Google Scholar

    [40]

    Hamamoto I 2010 Phys. Rev. C 81 021304(R)Google Scholar

    [41]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [42]

    Meng J, Ring P 1996 Rev. Lett. 77 3963Google Scholar

    [43]

    Sandulesu N, Van Giai N, Liotta R J 2000 Phys. Rev. C 61 061301Google Scholar

    [44]

    Kanada H, Kaneko T, Nagata S, Nomoto M 1979 Prog. Theor. Phys. 61 1327Google Scholar

    [45]

    Kruppa A T 1998 Phys. Lett. B 431 237Google Scholar

    [46]

    Kruppa A T, Arai K 1999 Phys. Rev. A 59 3556Google Scholar

    [47]

    Myo T, Kikuchi Y, Masui H, Kato K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [48]

    Shi M, Guo J Y, Liu Q, Niu Z M, Heng T H 2015 Phys. Rev. C 92 054313Google Scholar

    [49]

    Shi M, Shi X X, Niu Z M, Sun T T, Guo J M 2017 Eur. Phys. J. A 53 40Google Scholar

    [50]

    Tilley D R, Cheves C M, Godwin J L, et al. 2002 Nucl. Phys. A 708 3Google Scholar

    [51]

    Hoop B, Barschall H H 1966 Nucl. Phys. 83 65Google Scholar

    [52]

    Stammbach T, Walter R L 1972 Nucl. Phys. A 180 225Google Scholar

    [53]

    Vaughn F J, Imhof W L, Johnson R G, Walt M 1960 Phys. Rev. 118 683Google Scholar

    [54]

    Los Alamos P, Gryogenics G 1959 Nucl. Phys. 12 291Google Scholar

  • 图 1  用CMR-GF方法在4种不同积分路径下计算得到的n-α系统的$\rm P_{{1/2}}$轨道的单粒子共振态, 图中红色五角星代表共振态, 点心圆圈代表非共振连续谱, 绿色实线代表动量平面内的积分路径

    Fig. 1.  Single particle resonance states for $\rm P_{1/2}$ orbital of n-α systems calculated by using CMR-GF method under four different integral paths. The red pentagram represents the resonant state, the circle represents the continuum, and the green solid line represents the integral path in the momentum plane.

    图 2  图1所示, 计算得到的n-α系统的$\rm P_{3/2}$轨道的单粒子共振态, 图中红色圆球代表共振态, 点心圆圈代表非共振连续谱, 绿色实线代表是动量平面内的积分路径

    Fig. 2.  Single particle resonance states for $\rm P_{3/2}$ orbital of n-α systems. The red sphere represents the resonant state, the circle represents the continuum, and the green solid line represents the integral path in the momentum plane.

    图 3  在四种不同积分路径下, 用CMR-GF方法计算得到的$\rm P_{3/2}$态CLD

    Fig. 3.  CLD of the $\rm P_{3/2}$ state under four different integral paths calculated by CMR-GF method.

    图 4  在四种不同积分路径下, 用CMR-GF方法计算得到的$\rm P_{1/2}$态CLD

    Fig. 4.  CLD of the $\rm P_{1/2}$ state under four different integral paths calculated by CMR-GF method.

    图 5  n-α散射系统的${\rm{P}}_{1/2}$态的相移(橘色长虚线表示共振态散射相移, 红色短虚线表示连续谱散射相移, 黑色实线表示总散射相移, 紫色圆圈表示由R矩阵理论计算所得散射相移, 绿色五角星表示实验上的相移)

    Fig. 5.  The ${\rm{P}}_{1/2}$ phase shift of n-α scattering system. The orange long dotted line represents the resonant scattering phase shift, the red short dotted line represents the continuum scattering phase shift, the black solid line represents the total scattering phase shift, the purple circle represents the scattering phase shift calculated by R matrix theory, and the green stars represent the experimental data of the total scattering phase shift.

    图 6  n-α散射系统的${\rm{P}}_{3/2}$态的相移(橘色长虚线表示共振态散射相移, 红色短虚线表示连续谱散射相移, 黑色实线表示总散射相移, 紫色圆圈表示由R矩阵理论计算所得散射相移, 绿色五角星表示实验上的相移)

    Fig. 6.  The ${\rm{P}}_{3/2}$ phase shift of n-α scattering system. The orange long dotted line represents the resonant scattering phase shift, the red short dotted line represents the continuum scattering phase shift, the black solid line represents the total scattering phase shift, the purple circle represents the scattering phase shift calculated by R matrix theory, and the green stars represent the experimental data of the total scattering phase shift.

    图 8  ${\rm{P}}_{3/2}$波散射的共振态截面、连续谱截面和总散射截面

    Fig. 8.  Resonant cross section, continuum cross section, and total scattering cross section of ${\rm{P}}_{3/2}$-wave scattering.

    图 7  ${\rm{P}}_{1/2}$波散射的共振态截面、连续谱截面和总散射截面

    Fig. 7.  Resonant cross section, continuum cross section, and total scattering cross section of ${\rm{P}}_{1/2}$-wave scattering.

    图 9  系统的总散射截面(实点表示计算结果, 圆圈表示实验数据)

    Fig. 9.  Total scattering cross section of the n-α system. The solid points represent the calculated results, and the circles represent the experimental data.

    表 1  n-α散射KKNN势参数

    Table 1.  Parameters of the n-α KKNN potential

    $V^{\rm {\rm {c}}}$/MeV $ {\mu}^{\rm {c}} /{{\rm{f}}{{\rm{m}}^{ - 2}}}$ $ V_{l}^{\rm {c}}\!$/MeV $ {\mu}_{ {l}}^{\rm {c}} /{{\rm{f}}{{\rm{m}}^{ - 2}}} $
    $ -96.3 $ $ 0.36 $ $ 34.0 $ $ 0.20 $
    Central $ 77.0 $ $ 0.90 $ $ -85.0 $ $ 0.53 $
    $ 51.0 $ $ 2.50 $
    $V^{\rm{ls}}$/MeV ${\mu}^{ \rm{ls}} /{{\rm{f}}{{\rm{m}}^{ - 2}}}$ $V_{ {l}}^{ \rm{ls}}$/MeV ${\mu}_{ {l}}^{\rm{ls}} /{{\rm{f}}{{\rm{m}}^{ - 2}}}$
    Spin-orbit $ -16.8 $ $ 0.52 $ $ -20.0 $ $ 0.396 $
    $ 20.0 $ $ 2.200 $
    下载: 导出CSV
  • [1]

    Tanihata I 1996 J. Phys. G 22 157Google Scholar

    [2]

    Ryusuke S, Takayuki M, Kiyoshi K 2005 Prog. Theor. Phys. 113 1273Google Scholar

    [3]

    Kiyoshi K, Masayuki A 2014 Phys. Rev. C 89 034322Google Scholar

    [4]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [5]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Lett. 59 763Google Scholar

    [6]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [7]

    Taylor J R, Wiley J 1972 Scattering Theory: The Quantum Theory on Non-relativistic Collisions (New York: Inc. Mineola) pp204−207

    [8]

    Amos K, Canton L, Pisent G, Svenne J P, van der Knijff D 2003 Nucl. Phys. A 728 65Google Scholar

    [9]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [10]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [11]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [12]

    Shi M, Liu Q, Niu Z M, Gou J Y 2014 Phys. Rev. C 90 034319Google Scholar

    [13]

    Zhu Z L, Niu Z M, Li D P, Liu Q, Guo J Y 2014 Phys. Rev. C 89 034307Google Scholar

    [14]

    Liu Q, Guo J Y, Niu Z M, Chen S W 2012 Phys. Rev. C 86 054312Google Scholar

    [15]

    Wang H Y, Chang X U 2016 Nucl. Phys. Rev. 33 1

    [16]

    Jolly R K, Amos T M, Galonsky A 1973 Phys. Rev. C 7 1903Google Scholar

    [17]

    Brussel M K, Williams J H 1957 Phys. Rev. C 106 286Google Scholar

    [18]

    Hwang C F 1962 Phys. Rev. Lett. 9 104Google Scholar

    [19]

    May T H, Walter R L, Barschall H H 1963 Nucl. Phys. 45 17Google Scholar

    [20]

    Craddock M K 1963 Phys. Lett. 5 335Google Scholar

    [21]

    Barnard A C L, Jones C M, Weil J L 1964 Nucl. Phys. 50 604Google Scholar

    [22]

    Bunch S M, Forster H H, Kim C C 1964 Nucl. Phys. 53 241Google Scholar

    [23]

    Morgan G L 1968 Phys. Rev. 168 114Google Scholar

    [24]

    Garreta D, Sura J, Tarrats A 1969 Nucl. Phys. A 132 204Google Scholar

    [25]

    Goldstein N P, Held A, Stairs D G 1970 Can. J. Phys. 48 2629Google Scholar

    [26]

    Schwandt P, Clegg T B, Haeberli W 1971 Nucl. Phys. A 163 432Google Scholar

    [27]

    Bacher A D 1972 Phys. Rev. C 5 1147Google Scholar

    [28]

    Austin S M, Barschall H H, Shamu R E 1962 Phys. Rev. 126 1532Google Scholar

    [29]

    Shi X X, Shi M, Heng T H 2016 Phys. Rev. C 94 024302Google Scholar

    [30]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [31]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311Google Scholar

    [32]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [33]

    Shi M, Niu Z M, Liang H Z 2018 Phys. Rev. C 97 064301Google Scholar

    [34]

    Ali S, Bodmer A R 1966 Nucl. Phys. 80 99Google Scholar

    [35]

    Marquez L 1983 Phys. Rev. C 28 2525Google Scholar

    [36]

    Mohr P 1994 Z. Phys. A 349 339Google Scholar

    [37]

    Shlomo S 1992 Nucl. Phys. A 539 17Google Scholar

    [38]

    Levine R D 1969 Quantum Mechanics of Molecular Rate Processes (Oxford: Clarendon Press Oxford) pp101−106

    [39]

    Haberzettl H, Workman R 2007 Phys. Rev. C 76 058201Google Scholar

    [40]

    Hamamoto I 2010 Phys. Rev. C 81 021304(R)Google Scholar

    [41]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [42]

    Meng J, Ring P 1996 Rev. Lett. 77 3963Google Scholar

    [43]

    Sandulesu N, Van Giai N, Liotta R J 2000 Phys. Rev. C 61 061301Google Scholar

    [44]

    Kanada H, Kaneko T, Nagata S, Nomoto M 1979 Prog. Theor. Phys. 61 1327Google Scholar

    [45]

    Kruppa A T 1998 Phys. Lett. B 431 237Google Scholar

    [46]

    Kruppa A T, Arai K 1999 Phys. Rev. A 59 3556Google Scholar

    [47]

    Myo T, Kikuchi Y, Masui H, Kato K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [48]

    Shi M, Guo J Y, Liu Q, Niu Z M, Heng T H 2015 Phys. Rev. C 92 054313Google Scholar

    [49]

    Shi M, Shi X X, Niu Z M, Sun T T, Guo J M 2017 Eur. Phys. J. A 53 40Google Scholar

    [50]

    Tilley D R, Cheves C M, Godwin J L, et al. 2002 Nucl. Phys. A 708 3Google Scholar

    [51]

    Hoop B, Barschall H H 1966 Nucl. Phys. 83 65Google Scholar

    [52]

    Stammbach T, Walter R L 1972 Nucl. Phys. A 180 225Google Scholar

    [53]

    Vaughn F J, Imhof W L, Johnson R G, Walt M 1960 Phys. Rev. 118 683Google Scholar

    [54]

    Los Alamos P, Gryogenics G 1959 Nucl. Phys. 12 291Google Scholar

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [4] 高飞, 李腾, 童恒庆, 欧卓玲. 分数阶Willis环脑动脉瘤系统的混沌动力学分析与控制. 物理学报, 2016, 65(23): 230502. doi: 10.7498/aps.65.230502
    [5] 邢永忠, 赵兴文, 郑玉明. 不变振幅的不同投影选择对核子自能与碰撞截面的影响. 物理学报, 2014, 63(15): 152101. doi: 10.7498/aps.63.152101
    [6] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [7] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [8] 刘野, 陈寿万, 郭建友. 复标度方法对原子核单粒子共振态的研究. 物理学报, 2012, 61(11): 112101. doi: 10.7498/aps.61.112101
    [9] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究. 物理学报, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [10] 王晓璐, 令狐荣锋, 杨建会, 吕兵, 高涛, 杨向东. Ne同位素替代下Ne-HF碰撞截面的理论计算. 物理学报, 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [11] 鲁彦霞, 谢安平, 李小华, 向东, 路兴强, 李新霞, 黄千红. Cq+(q=14)与He,Ne,Ar碰撞的电子损失截面测量与研究. 物理学报, 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [12] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究. 物理学报, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [13] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙. 类氦离子的KLL双电子复合过程的相对论理论研究. 物理学报, 2006, 55(1): 112-118. doi: 10.7498/aps.55.112
    [14] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [15] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [16] 武尚賢, 黄五羣, 许伯威. 关于Kπ共振态. 物理学报, 1966, 22(8): 961-966. doi: 10.7498/aps.22.961
    [17] 葛墨林, 段一士. π-π共振态. 物理学报, 1966, 22(6): 724-728. doi: 10.7498/aps.22.724
    [18] 刘连寿. π-N散射的复角动量. 物理学报, 1965, 21(6): 1123-1131. doi: 10.7498/aps.21.1123
    [19] 葛墨林, 段一士. 关于π-π共振态. 物理学报, 1965, 21(11): 1903-1912. doi: 10.7498/aps.21.1903
    [20] 许伯威, 孔凡梅, 宫学惠. K—K共振态. 物理学报, 1964, 20(11): 1129-1134. doi: 10.7498/aps.20.1129
计量
  • 文章访问数:  7250
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-02-25
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回