搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

$ {{\mathrm{C}}}_{4}^{-} $离子的低能电子弹性散射研究: 共振态与同分异构

李炅远 孟举 王克栋

引用本文:
Citation:

$ {{\mathrm{C}}}_{4}^{-} $离子的低能电子弹性散射研究: 共振态与同分异构

李炅远, 孟举, 王克栋
cstr: 32037.14.aps.73.20241377

Low-energy electron elastic scattering of $ {\mathbf{C}}_{4}^{-} $ anions: Resonance states and conformers

Li Jiong-Yuan, Meng Ju, Wang Ke-Dong
cstr: 32037.14.aps.73.20241377
PDF
HTML
导出引用
  • 基于从头算 R -矩阵方法, 在固定核近似下, 采用单态密耦合(close couple, CC)模型, 研究了低能电子与$ {{\mathrm{C}}}_{4}^{-} $负离子的散射过程. 研究结果预测了该负离子四种异构体在0—12 eV的能区内的电子弹性散射积分截面, 研究了存在的共振态以及构型变化对共振态位置与宽度的影响. 此外还对理论结果与现有实验数据进行了细致的比较和分析, 结果表明, 实验观测到的8.8 eV共振峰主要是异构体A的$ {{{\Sigma }}}_{{\mathrm{u}}}^{+} $和$ {{{\Sigma }}}_{{\mathrm{u}}}^{-} $共振态的贡献以及少部分来自异构体C的A2共振态的贡献. 散射截面上揭示了异构体A存在五个共振态, 异构体B有三个共振态, 异构体C和D各存在四个共振态. 最后, 根据玻尔兹曼分布计算了不同温度下各异构体的布居, 模拟了在常温条件下$ {{\mathrm{C}}}_{4}^{-} $的低能电子弹性散射积分截面, 与已有的实验结果符合较好. 同时还发现在3.3 eV的低能区处存在一个宽度为0.20 eV的势形共振态, 为实验的进一步证实提供了理论参考.
    This paper reports low-energy electron scattering with $ {{\mathrm{C}}}_{4}^{-} $ anions by using the ab initio R -matrix method in the single state close-coupling (CC) model and the fixed-nuclei approximation. We predict the elastic integral scattering cross sections (ICSs) of four conformers of $ {{\mathrm{C}}}_{4}^{-} $ ions in an energy range of 0 < E ≤12 eV and discuss the effects of configuration changes on resonance position and width. Additionally, the theoretical results and experimental data are compared and analyzed. The results indicate that the 8.8 eV resonance peak observed in experiment is mainly derived from the $ {{{\Sigma }}}_{{\mathrm{u}}}^{+} $ and $ {{{\Sigma }}}_{{\mathrm{u}}}^{-} $ resonances of the conformer A and the A2 resonance of the conformer C. The scattering cross-section reveals that the conformer A has five resonant states, and the conformer B has three resonances, while C and D each have four resonances. Finally, we use the Boltzmann distribution to calculate the populations of different conformers at different temperatures, and simulate the low-energy electron elastic integrated scattering cross-section at room temperature, which is in good agreement with available experimental results. We also find a shape resonance with a width of 0.20 eV at 3.3 eV in our total cross sections, which is not detected in the existing experimental results. This provides new opportunities for measurement.
      通信作者: 王克栋, wangkd@htu.cn
    • 基金项目: 河南省优秀青年科学基金(批准号: 212300410054)资助的课题.
      Corresponding author: Wang Ke-Dong, wangkd@htu.cn
    • Funds: Project supported by the Excellent Youth Science Fund of Henan Province, China (Grant No. 212300410054).
    [1]

    Douglas A E 1977 Nature 269 130Google Scholar

    [2]

    Gerhardt P, Loffler S, Homann K H 1987 Chem. Phys. Lett. 137 306Google Scholar

    [3]

    Bernath P F, Hinkle K H, Keady J J 1989 Symp. Int. Combust. 244 562Google Scholar

    [4]

    Tulej M, Kirkwood D A, Pachkov M, Maier J P 1998 Astrophys. J 506 69Google Scholar

    [5]

    Helden G V, Hsu M T, Kemper P R, Bowers M T 1991 J. Chem. Phys 95 3835Google Scholar

    [6]

    Helden G V, Kemper P R, Gotts N G, Bowers M T 1993 Science 259 1300Google Scholar

    [7]

    Helden G V, Hsu M T, Gotts N G, Bowers M T 1993 Chem. Phys. Lett 97 8182Google Scholar

    [8]

    Gotts N G, Helden G V, Bowers M T 1995 Int. J. Mass Spectrom. Ion Processes 149-150 217Google Scholar

    [9]

    Giuffreda M G, Deleuze M S, François J P 2002 J. Chem. Phys. 106 8569Google Scholar

    [10]

    Adamowicz L 1991 Chem. Phys. 156 387Google Scholar

    [11]

    Schmatz S, Botschwina P 1995 Int. J. Mass Spectrom. Ion Processes 149 621Google Scholar

    [12]

    Dreuw A, Cederbaum L S 2001 Phys. Rev. A 63 049904Google Scholar

    [13]

    Padellec A L, Rabilloud F, Pegg D, Neau A, Hellberg F, Thomas R D, Schmidt H T, Larsson M, Danared H, Kallberg A, Andersson K, Hanstorp D 2001 J. Chem. Phys. 115 10671Google Scholar

    [14]

    Fritioff K, Sandström J, Andersson P, Hanstorp D, Hellberg F, Thomas R, Larsson M, Österdahl F, Collins G F, Le Padellec A, Pegg D J, Gibson N D, Danared H, Källberg A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2241Google Scholar

    [15]

    Morgan L A, Gillan C J, Tennyson J, Chen X 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4087Google Scholar

    [16]

    Morgan, L A, Tennyson J, Gillan C J 1998 Comput. Phys. Commun. 114 120Google Scholar

    [17]

    Mašín Z, Benda J, Gorfinkiel J D, Harvey A G, Tennyson J, 2020 Comput. Phys. Commun. 249 107092Google Scholar

    [18]

    Tennyson J 2010 Phys. Rep. 491 29Google Scholar

    [19]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys J. D 66 58Google Scholar

    [20]

    Watts J D, Gauss J, Stanton J F, Bartlett R J 1992 J. Chem. Phys. 97 8372Google Scholar

    [21]

    Takeshi Y, Tew D P, Handy N C 2004 Chem. Phys. Lett. 393 51Google Scholar

    [22]

    Tirado-Rives J, Jorgensen W L 2008 J. Chem. Theory Comput. 4 297Google Scholar

    [23]

    Andersson M P, Uvdal P 2005 J. Phys. Chem. A 109 2937Google Scholar

  • 图 1  $ {{\mathrm{C}}}_{4}^{-} $离子的四种异构体和相对能量(单位eV) (a) 异构体A (2Πg) 0.00; (b) 异构体B (2Σg) +1.09; (c) 异构体C (2B1) +1.36; (d) 异构体D (2B2g) +1.39; 使用的方法是CCSD(T), 基组为aug-cc-pVQZ

    Fig. 1.  Four conformers of $ {{\mathrm{C}}}_{4}^{-} $ anion and there relative energy (In unit of eV): (a) Conformer A (2Πg) 0.00; (b) conformer B (2Σg) +1.09; (c) conformer C (2B1) +1.36; (d) conformer D (2B2g) +1.39. The theoretical method is CCSD(T) and the basis set is aug-cc-pVQZ.

    图 2  不同的活化空间下$ {{\mathrm{C}}}_{4}^{-} $离子异构体A弹性散射截面

    Fig. 2.  Elastic scattering cross sections for the conformer A of $ {{\mathrm{C}}}_{4}^{-} $ anion in three different CAS.

    图 3  $ {{\mathrm{C}}}_{4}^{-} $离子异构体A的低能弹性积分散射截面 (a) 不同基组的CC单态散射截面; (b) SEP, CC单态模型的散射截面. 方框为Fritioff等获得的实验数据

    Fig. 3.  Low energy elastic integral cross section of the conformer A of $ {{\mathrm{C}}}_{4}^{-} $: (a) The cross sections of single state CC model with four different basis sets; (b) the cross sections of SEP and single state CC models. The experimental data obtained by Fritioff et al. is also shown.

    图 4  $ {{\mathrm{C}}}_{4}^{-} $离子A异构体的弹性散射积分截面

    Fig. 4.  Elastic integral cross sections of symmetry components of $ {{\mathrm{C}}}_{4}^{-} $ conformer A.

    图 5  $ {{\mathrm{C}}}_{4}^{-} $离子B异构体的弹性散射积分截面

    Fig. 5.  Elastic integral cross sections of symmetry components of $ {{\mathrm{C}}}_{4}^{-} $ conformer B.

    图 6  $ {{\mathrm{C}}}_{4}^{-} $离子C异构体的弹性散射积分截面

    Fig. 6.  Elastic integral cross sections of symmetry components of $ {{\mathrm{C}}}_{4}^{-} $conformer C.

    图 7  $ {{\mathrm{C}}}_{4}^{-} $离子D异构体的弹性散射积分截面

    Fig. 7.  Elastic integral cross sections of symmetry components of $ {{\mathrm{C}}}_{4}^{-} $ conformer D.

    图 8  $ {{\mathrm{C}}}_{4}^{-} $四种异构体的电子弹性散射截面以及根据玻尔兹曼分布拟合的常温下的散射总截面

    Fig. 8.  Total elastic scattering cross sections of four $ {{\mathrm{C}}}_{4}^{-} $conformers and cross sections of the mixed conformers fitted at room temperature according to the Boltzmann distribution.

    表 1  $ {{\mathrm{C}}}_{4}^{-} $异构体A的键长

    Table 1.  Bond length of conformer A of $ {{\mathrm{C}}}_{4}^{-} $.

    中心键长/Å两边键长/Å
    Our1.3331.270
    Padllec et al.[13]1.3431.277
    Watts et al.[20]1.3431.283
    下载: 导出CSV

    表 2  $ {{\mathrm{C}}}_{4}^{-} $的异构体A的共振位置和宽度

    Table 2.  Resonance position and width of conformer A of $ {{\mathrm{C}}}_{4}^{-} $.

    StatePosition/eVWidth/eV
    $ {{{\Sigma }}}_{{\mathrm{g}}}^{+}/ $Ag3.30.20
    $ {{{\Sigma }}}_{{\mathrm{u}}}^{+}/ $B1u8.80.75
    $ {{{\Sigma }}}_{{\mathrm{u}}}^{-}/ $Au9.11.99
    $ {{{\Pi }}}_{{\mathrm{u}}}/ $B2u+B3u10.10.15
    $ {{{\Pi }}}_{{\mathrm{g}}}/ $B2g+B3g10.40.15
    下载: 导出CSV

    表 3  $ {{\mathrm{C}}}_{4}^{-} $的异构体B的共振位置和宽度

    Table 3.  Resonance position and width of conformer B of $ {{\mathrm{C}}}_{4}^{-} $.

    StatePosition/eVWidth/eV
    $ {{{\Sigma }}}_{{\mathrm{g}}}^{+}/ $Ag2.10.23
    $ {{{\Pi }}}_{{\mathrm{u}}}/ $B2u+B3u9.62.2
    $ {{{\Pi }}}_{{\mathrm{g}}}/ $B2g+B3g10.10.14
    下载: 导出CSV

    表 4  $ {\rm C}_{4}^{-}$ 的异构体C的共振位置和宽度

    Table 4.  Resonance position and width of conformer C of $ {{\mathrm{C}}}_{4}^{-} $.

    StatePosition/eVWidth/eV
    A14.70.42
    A28.61.36
    B210.63.23
    A111.00.56
    下载: 导出CSV

    表 5  $ {{\mathrm{C}}}_{4}^{-} $的异构体D的共振位置和宽度

    Table 5.  Resonance position and width of the conformer D of $ {{\mathrm{C}}}_{4}^{-} $.

    StatePosition/eVWidth/eV
    B1g5.760.47
    Ag6.00.14
    Ag9.25.20
    B1u11.01.80
    下载: 导出CSV

    表 6  $ {{\mathrm{C}}}_{4}^{-} $四种异构体随温度变化的百分比

    Table 6.  Proportions of the four conformers vary with temperature.

    异构体温度T /K
    100200298.154008001500300010000
    A99.4389.0074.1562.5042.7933.9329.2726.24
    B0.385.5111.4715.5521.3423.4124.3124.82
    C0.112.927.4911.3218.2121.5123.3124.50
    D0.082.586.8910.6317.6521.1523.1124.44
    下载: 导出CSV
  • [1]

    Douglas A E 1977 Nature 269 130Google Scholar

    [2]

    Gerhardt P, Loffler S, Homann K H 1987 Chem. Phys. Lett. 137 306Google Scholar

    [3]

    Bernath P F, Hinkle K H, Keady J J 1989 Symp. Int. Combust. 244 562Google Scholar

    [4]

    Tulej M, Kirkwood D A, Pachkov M, Maier J P 1998 Astrophys. J 506 69Google Scholar

    [5]

    Helden G V, Hsu M T, Kemper P R, Bowers M T 1991 J. Chem. Phys 95 3835Google Scholar

    [6]

    Helden G V, Kemper P R, Gotts N G, Bowers M T 1993 Science 259 1300Google Scholar

    [7]

    Helden G V, Hsu M T, Gotts N G, Bowers M T 1993 Chem. Phys. Lett 97 8182Google Scholar

    [8]

    Gotts N G, Helden G V, Bowers M T 1995 Int. J. Mass Spectrom. Ion Processes 149-150 217Google Scholar

    [9]

    Giuffreda M G, Deleuze M S, François J P 2002 J. Chem. Phys. 106 8569Google Scholar

    [10]

    Adamowicz L 1991 Chem. Phys. 156 387Google Scholar

    [11]

    Schmatz S, Botschwina P 1995 Int. J. Mass Spectrom. Ion Processes 149 621Google Scholar

    [12]

    Dreuw A, Cederbaum L S 2001 Phys. Rev. A 63 049904Google Scholar

    [13]

    Padellec A L, Rabilloud F, Pegg D, Neau A, Hellberg F, Thomas R D, Schmidt H T, Larsson M, Danared H, Kallberg A, Andersson K, Hanstorp D 2001 J. Chem. Phys. 115 10671Google Scholar

    [14]

    Fritioff K, Sandström J, Andersson P, Hanstorp D, Hellberg F, Thomas R, Larsson M, Österdahl F, Collins G F, Le Padellec A, Pegg D J, Gibson N D, Danared H, Källberg A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2241Google Scholar

    [15]

    Morgan L A, Gillan C J, Tennyson J, Chen X 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4087Google Scholar

    [16]

    Morgan, L A, Tennyson J, Gillan C J 1998 Comput. Phys. Commun. 114 120Google Scholar

    [17]

    Mašín Z, Benda J, Gorfinkiel J D, Harvey A G, Tennyson J, 2020 Comput. Phys. Commun. 249 107092Google Scholar

    [18]

    Tennyson J 2010 Phys. Rep. 491 29Google Scholar

    [19]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys J. D 66 58Google Scholar

    [20]

    Watts J D, Gauss J, Stanton J F, Bartlett R J 1992 J. Chem. Phys. 97 8372Google Scholar

    [21]

    Takeshi Y, Tew D P, Handy N C 2004 Chem. Phys. Lett. 393 51Google Scholar

    [22]

    Tirado-Rives J, Jorgensen W L 2008 J. Chem. Theory Comput. 4 297Google Scholar

    [23]

    Andersson M P, Uvdal P 2005 J. Phys. Chem. A 109 2937Google Scholar

  • [1] 张兴义, 杨帅, 尚述祥, 吴少博, 王航, 肖集雄. 基于R矩阵理论的气体分子弹性碰撞截面计算及其与绝缘强度关联分析. 物理学报, 2024, 73(24): 243402. doi: 10.7498/aps.73.20241355
    [2] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性. 物理学报, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [3] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [4] 王晓伟, 郭建友. 复动量格林函数方法对n-α散射研究. 物理学报, 2019, 68(9): 092101. doi: 10.7498/aps.68.20182197
    [5] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [6] 张辉, 杨洋, 李志青. 三维a-IGZO薄膜中的电子-电子散射. 物理学报, 2016, 65(16): 167301. doi: 10.7498/aps.65.167301
    [7] 底马可, 沈光先, 赵云强, 曾若生, 汪荣凯. Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算. 物理学报, 2015, 64(13): 133101. doi: 10.7498/aps.64.133101
    [8] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响. 物理学报, 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [9] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究. 物理学报, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [10] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [11] 余春日, 宋晓书, 程新路, 杨向东, 申传胜. Ne-HF体系的相互作用势及散射截面的密耦计算. 物理学报, 2008, 57(6): 3446-3451. doi: 10.7498/aps.57.3446
    [12] 汪荣凯, 沈光先, 余春日, 杨向东. He-HF(DF,TF)碰撞体系散射截面的理论计算. 物理学报, 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [13] 施德恒, 孙金锋, 刘玉芳, 朱遵略, 马 恒. 50—5000 eV电子被C4H8O, C5H10O2, C6H5CH3和C4H8O2散射的总截面. 物理学报, 2008, 57(12): 7612-7618. doi: 10.7498/aps.57.7612
    [14] 施德恒, 孙金锋, 朱遵略, 刘玉芳. 一种考虑几何屏蔽效应的计算“电子-分子”散射总截面的可加性规则修正方法. 物理学报, 2008, 57(3): 1632-1639. doi: 10.7498/aps.57.1632
    [15] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面. 物理学报, 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [16] 余春日, 汪荣凯, 程新路, 杨向东. He-HF体系势能模型对散射截面影响的理论研究. 物理学报, 2007, 56(5): 2577-2584. doi: 10.7498/aps.56.2577
    [17] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究. 物理学报, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [18] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略. 一种计算中、高能电子被分子散射总截面的修正势方法. 物理学报, 2006, 55(8): 4096-4102. doi: 10.7498/aps.55.4096
    [19] 施德恒, 孙金锋, 杨向东, 朱遵略, 刘玉芳. 中高能电子被甲烷及氯代甲烷散射的总截面. 物理学报, 2005, 54(5): 2019-2024. doi: 10.7498/aps.54.2019
    [20] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面. 物理学报, 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
计量
  • 文章访问数:  279
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2024-10-18
  • 上网日期:  2024-11-12
  • 刊出日期:  2024-12-20

/

返回文章
返回