搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维a-IGZO薄膜中的电子-电子散射

张辉 杨洋 李志青

引用本文:
Citation:

三维a-IGZO薄膜中的电子-电子散射

张辉, 杨洋, 李志青

Electron-electron scattering in three-dimensional amorphous IGZO films

Zhang Hui, Yang Yang, Li Zhi-Qing
PDF
导出引用
  • 本文利用射频磁控溅射法制备了一系列厚度约800 nm的非晶铟镓锌氧化物(a-IGZO)薄膜,并对其电输运性质和低温的电子退相干机理进行了系统的研究. 研究发现,所有a-IGZO薄膜中,载流子浓度均不随温度变化,高温区的电阻率-温度系数为正,说明样品具有类金属导电特性. 通过对薄膜低温磁电阻的测量,获得了电子退相干散射率与温度的关系. 分析表明,薄膜中的电子-声子散射率远小于小能量转移电子-电子散射率,小能量转移电子-电子散射率主导电子退相干散射率与温度的依赖关系.
    Electron dephasing process is important and interesting in disordered conductors. In general three-dimensional (3D) disordered metals, the electron-electron (e-e) scattering is negligibly weak compared with the electron-phonon (e-ph) scattering. Thus, the theoretical prediction concerning the e-e scattering rate 1/τee as a function of temperature T in 3D disordered conductor has not been fully tested so far, though it was proposed four decades ago. In the frame of free-electron-like model, the e-ph relaxation rate 1/τep is proportional to carrier concentration n, while the small-and large-energy-transfer e-e scattering rate obey the laws 1/τeeS ∝ n-4/3 and 1/τeeL ∝ n-2/3, respectively. In other words, e-e scattering may dominate the dephasing processes in 3D disordered metals with sufficient low carrier concentrations. In the present work, we systematically investigate the electronic transport properties of amorphous indium gallium zinc oxide (a-IGZO) prepared by the radio frequency sputtering method. The carrier concentrations of the highly degenerate IGZO films are all ~ 5×1019 cm-3, which are 3-4 orders of magnitude lower than those of typical metals. Our thick films (~ 800 nm) are 3D systems with respect to weak-localization (WL) effect and e-e scattering. X-ray diffraction patterns of the films indicate that our films are all amorphous. For each film, the resistivity increases with the increase of the temperature in the high temperature region (T ≥ 200 K) and the carrier concentration is almost invariable in the whole measured temperature range. This indicates that the films possess metal-like transport properties. By comparing the low-field magnetoconductivity versus magnetic field data σ (B) with that from the 3D WL theory, we extract the electron dephasing rate 1/τφ at different temperatures in the low temperature region. It is found that 1/τφ varies linearly with T3/2 for each film. The T3/2 behavior of 1/τφ can be quantitatively described by the 3D small-energy-transfer e-e scattering theory. The e-ph scattering rate 1/τep and large-energy-transfer e-e scattering rate 1/τeeL are negligibly weak in this low-carrier-concentration conductor. Thus, we can observe the T3/2 behavior of 1/τφ.
      通信作者: 李志青, zhiqingli@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174216)和高等学校博士学科点专项科研基金(批准号:20120032110065)资助的课题.
      Corresponding author: Li Zhi-Qing, zhiqingli@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174216) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110065).
    [1]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [2]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [3]

    Lin J J, Bird J P 2002 J. Phys. Condens. Matter 14 R501

    [4]

    Rammer J, Schmid A 1986 Phys. Rev. B 34 1352

    [5]

    Zhong Y L, Lin J J 1998 Phys. Rev. Lett. 80 588

    [6]

    Fukuyama H, Abrahams E 1983 Phys. Rev. B 27 5976

    [7]

    Schmid A 1974 Z. Phys. 271 251

    [8]

    Sergeev A, Mitin V 2000 Phys. Rev. B 61 6041

    [9]

    Lang W J, Li Z Q 2014 Appl. Phys. Lett. 105 042110

    [10]

    Yang Y, Liu X D, Li Z Q 2016 EPL 114 37002

    [11]

    Zhang Y J, Li Z Q, Lin J J 2013 EPL 103 47002

    [12]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [13]

    Kamiya T, Nomura K, Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305

    [14]

    Yabuta H, Sano M, Abe K, Aiba T, Den T, Kumomi H, Hosono H 2006 Appl. Phys. Lett. 89 112123

    [15]

    Kamiya T, Nomura K, Hosono H 2009 J. Disp. Technol. 5 273

    [16]

    Makise K, Hidaka K, Ezaki S, Asano T, Shinozaki B, Tomai S, Nakamura H 2014 J. Appl. Phys. 116 153703

    [17]

    Takagi A, Nomura K, Ohta H, Yanagi H, Kamiya T, Hirano M, Hosono H 2005 Thin Solid Films 486 38

    [18]

    Ziman J M 1960 Electron and Phonons (Oxford: Clarendon Press) p364

    [19]

    Lien C C, Wu C Y, Li Z Q, Lin J J 2011 J. Appl. Phys. 110 063706

    [20]

    Kawabata A 1980 J. Phys. Soc. Jpn. 49 628

    [21]

    Kawabata A 1980 Solid State Commun. 34 431

    [22]

    Fukuyama H, Hoshino K 1981 J. Phys. Soc. Jpn. 50 2131

    [23]

    Fehr Y, May T S, Rosenbaum R 1986 Phy. Rev. B 33 6631

    [24]

    Wu C Y, Lin J J 1994 Phys. Rev. B 50 385

    [25]

    Baxter D V, Richter R, Trudeau M L, Cochrane R W, Strom-Olsen J O 1989 J. Phys. Paris 50 1673

    [26]

    Bergmann G 2010 Int. J. Mod. Phys. B 24 2015

    [27]

    Lany S, Zunger A 2007 Phys. Rev. Lett. 98 045501

    [28]

    Zhong Y L, Sergeev A, Chen C D, Lin J J 2010 Phys. Rev. Lett. 104 206803

    [29]

    Yoshikawa T, Yagi T, Oka N, Jia J, Yamashita Y, Hattori K, Shigesato Y 2013 Appl. Phys. Express 6 021101

    [30]

    Nomura K, Kamiya T, Ohta H, Uruga T, Hirano M, Hosono H 2007 Phys. Rev. B 75 035212

    [31]

    Cui B, Zeng L, Keane D, Bedzyk M J, Buchholz D B, Chang R P H, Yu Xinge, Smith J, Marks T J, Xia Y, Facchetti A F, Medvedeva J E, Grayson M 2016 J. Phys. Chem. C 120 7467

  • [1]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [2]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [3]

    Lin J J, Bird J P 2002 J. Phys. Condens. Matter 14 R501

    [4]

    Rammer J, Schmid A 1986 Phys. Rev. B 34 1352

    [5]

    Zhong Y L, Lin J J 1998 Phys. Rev. Lett. 80 588

    [6]

    Fukuyama H, Abrahams E 1983 Phys. Rev. B 27 5976

    [7]

    Schmid A 1974 Z. Phys. 271 251

    [8]

    Sergeev A, Mitin V 2000 Phys. Rev. B 61 6041

    [9]

    Lang W J, Li Z Q 2014 Appl. Phys. Lett. 105 042110

    [10]

    Yang Y, Liu X D, Li Z Q 2016 EPL 114 37002

    [11]

    Zhang Y J, Li Z Q, Lin J J 2013 EPL 103 47002

    [12]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [13]

    Kamiya T, Nomura K, Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305

    [14]

    Yabuta H, Sano M, Abe K, Aiba T, Den T, Kumomi H, Hosono H 2006 Appl. Phys. Lett. 89 112123

    [15]

    Kamiya T, Nomura K, Hosono H 2009 J. Disp. Technol. 5 273

    [16]

    Makise K, Hidaka K, Ezaki S, Asano T, Shinozaki B, Tomai S, Nakamura H 2014 J. Appl. Phys. 116 153703

    [17]

    Takagi A, Nomura K, Ohta H, Yanagi H, Kamiya T, Hirano M, Hosono H 2005 Thin Solid Films 486 38

    [18]

    Ziman J M 1960 Electron and Phonons (Oxford: Clarendon Press) p364

    [19]

    Lien C C, Wu C Y, Li Z Q, Lin J J 2011 J. Appl. Phys. 110 063706

    [20]

    Kawabata A 1980 J. Phys. Soc. Jpn. 49 628

    [21]

    Kawabata A 1980 Solid State Commun. 34 431

    [22]

    Fukuyama H, Hoshino K 1981 J. Phys. Soc. Jpn. 50 2131

    [23]

    Fehr Y, May T S, Rosenbaum R 1986 Phy. Rev. B 33 6631

    [24]

    Wu C Y, Lin J J 1994 Phys. Rev. B 50 385

    [25]

    Baxter D V, Richter R, Trudeau M L, Cochrane R W, Strom-Olsen J O 1989 J. Phys. Paris 50 1673

    [26]

    Bergmann G 2010 Int. J. Mod. Phys. B 24 2015

    [27]

    Lany S, Zunger A 2007 Phys. Rev. Lett. 98 045501

    [28]

    Zhong Y L, Sergeev A, Chen C D, Lin J J 2010 Phys. Rev. Lett. 104 206803

    [29]

    Yoshikawa T, Yagi T, Oka N, Jia J, Yamashita Y, Hattori K, Shigesato Y 2013 Appl. Phys. Express 6 021101

    [30]

    Nomura K, Kamiya T, Ohta H, Uruga T, Hirano M, Hosono H 2007 Phys. Rev. B 75 035212

    [31]

    Cui B, Zeng L, Keane D, Bedzyk M J, Buchholz D B, Chang R P H, Yu Xinge, Smith J, Marks T J, Xia Y, Facchetti A F, Medvedeva J E, Grayson M 2016 J. Phys. Chem. C 120 7467

  • [1] 林旖旎, 马立, 杨权, 耿松超, 叶茂盛, 陈涛, 孙立宁. 径向压缩碳纳米管的电子输运性质. 物理学报, 2022, 71(2): 027301. doi: 10.7498/aps.71.20211370
    [2] 林旖旎, 马立, 杨权, 陈涛. 径向压缩碳纳米管的电子输运性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211370
    [3] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [4] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [5] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [6] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [7] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用. 物理学报, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [8] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究. 物理学报, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [9] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [10] 施德恒, 孙金锋, 刘玉芳, 朱遵略, 马 恒. 50—5000 eV电子被C4H8O, C5H10O2, C6H5CH3和C4H8O2散射的总截面. 物理学报, 2008, 57(12): 7612-7618. doi: 10.7498/aps.57.7612
    [11] 施德恒, 孙金锋, 朱遵略, 刘玉芳. 一种考虑几何屏蔽效应的计算“电子-分子”散射总截面的可加性规则修正方法. 物理学报, 2008, 57(3): 1632-1639. doi: 10.7498/aps.57.1632
    [12] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面. 物理学报, 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [13] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [14] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 物理学报, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [15] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略. 一种计算中、高能电子被分子散射总截面的修正势方法. 物理学报, 2006, 55(8): 4096-4102. doi: 10.7498/aps.55.4096
    [16] 刘义保, 庞文宁, 丁海兵, 尚仁成. 电子散射的钠原子受激态取向参数研究. 物理学报, 2005, 54(11): 5121-5125. doi: 10.7498/aps.54.5121
    [17] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面. 物理学报, 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
    [18] 施德恒, 孙金锋, 杨向东, 朱遵略, 刘玉芳. 中高能电子被甲烷及氯代甲烷散射的总截面. 物理学报, 2005, 54(5): 2019-2024. doi: 10.7498/aps.54.2019
    [19] 陈将伟, 杨林峰. 有限长双壁碳纳米管的电子输运性质. 物理学报, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
    [20] 金星南. 电子与正电子散射的辐射修正. 物理学报, 1955, 11(2): 149-162. doi: 10.7498/aps.11.149
计量
  • 文章访问数:  2826
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 修回日期:  2016-06-13
  • 刊出日期:  2016-08-05

三维a-IGZO薄膜中的电子-电子散射

  • 1. 天津大学理学院, 天津市低维材料物理与制备技术重点实验室, 天津 300350
  • 通信作者: 李志青, zhiqingli@tju.edu.cn
    基金项目: 国家自然科学基金(批准号:11174216)和高等学校博士学科点专项科研基金(批准号:20120032110065)资助的课题.

摘要: 本文利用射频磁控溅射法制备了一系列厚度约800 nm的非晶铟镓锌氧化物(a-IGZO)薄膜,并对其电输运性质和低温的电子退相干机理进行了系统的研究. 研究发现,所有a-IGZO薄膜中,载流子浓度均不随温度变化,高温区的电阻率-温度系数为正,说明样品具有类金属导电特性. 通过对薄膜低温磁电阻的测量,获得了电子退相干散射率与温度的关系. 分析表明,薄膜中的电子-声子散射率远小于小能量转移电子-电子散射率,小能量转移电子-电子散射率主导电子退相干散射率与温度的依赖关系.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回