搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算

底马可 沈光先 赵云强 曾若生 汪荣凯

引用本文:
Citation:

Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算

底马可, 沈光先, 赵云强, 曾若生, 汪荣凯

Theoretical calculation of the vib-rotational interaction potential and the scattering cross section for the Ar-H2 (D2, T2) collision system

Di Ma-Ke, Shen Guang-Xian, Zhao Yun-Qiang, Zeng Ruo-Sheng, Wang Rong-Kai
PDF
导出引用
  • 用量子力学从头算的耦合族CCSD(T)方法, 使用相关一致基组aug-cc-pV5Z并加3s3p2d1f1g高斯键函数计算了Ar原子与H2分子的振转相互作用和电荷分布, 采用Boys和Bernardi提出的均衡法消除了基组重叠误差(BSSE). 然后用Tang-Toennies势能函数拟合得到Ar-H2体系相互作用势的解析表达式. 在该相互作用势下, 用密耦方法计算了Ar原子入射能量为83 meV时, Ar-H2(D2, T2)碰撞体系的散射截面. 计算Ar-D2体系的微分截面与实验值比较符合很好. 计算结果及分析表明, 在长程吸引势的散射中, 色散能起主要作用; 在短程排斥势的散射中, 交换能起重要作用. 当碰撞参数在0.27 nm至0.47 nm的范围时, Ar-H2(D2, T2)碰撞体系的径向偶极发生两次转向.
    Based on the ab initio coupled-cluster CCSD(T) method in quantum mechanics, the charge distribution of Ar atom and its vib-rotational interaction with H2 molecule are calculated using augmented correlation consistent basis sets aug-cc-pV5Z and 3s3p2d1f1g Gaussian bonding function, and the basis set superposition error (BSSE) is eliminated using Boy and Bernardi's full counterpoise method. Afterwards, the analytical expression of the interaction potential of the Ar-H2 system is fitted with Tang-Toennies potential function. With this interaction potential, the scattering cross section of Ar-H2(D2, T2) collision system is calculated by using close-coupling method when the incident energy of Ar atoms is 83 meV. The calculated differential cross section of Ar-D2 collision system is consistent with the experimental results. Calculated result and analysis show that the dispersion energy plays a key role in the long-range attractive potential scattering, and the exchange energy plays an important role in the short-range repulsive potential scattering. The direction of the radial dipole of the Ar-H2 (D2, T2) collision system is turned twice in the range of impact parameters from 0.27 to 0.47 nm.
    • 基金项目: 国家自然科学基金(批准号:21101038,21461006,51472053)和贵州省科技厅与贵州师范大学联合基金(批准号:黔科合J字LKS[2009]01)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21101038, 21461006, 51472053), and the United Foundation of Science and Techenolegy Department of Guizhou Province and Guizhou Normal University, China (Grant No. 2009J01).
    [1]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [2]

    Chen J G, Wang R Q, Zhai Z, Chen J, Fu P M, Wang B B, Liu W M 2012 Phys. Rev. A 86 033417

    [3]

    Wei H, Le Roy R J, Wheatley R, Meath W J 2005 J. Chem. Phys. 122 084321

    [4]

    Li Y F, Linghu R F, Xu M 2013 J. Sichuan Univ. (Natural Science Edition) 50 1053 (in Chinese) [李应发, 令狐荣锋, 徐梅 2013 四川大学学报(自然科学版) 50 1053]

    [5]

    Zeng J Y 2000 Quantum Mechanics Vol. 1 (Third Edition) (Beijing: Science Press) pp650-651 (in Chinese) [曾谨言 2000 量子力学 卷I(第三版)(北京: 科学出版社) 第650-651页]

    [6]

    Gong M Y, Xu X T, Feng E Y 2011 Chin. Phys. B 20 113401

    [7]

    Gong M Y, Hu X L, Chen X, Niu M, Feng E Y 2010 Chin. Phys. B 19 063401

    [8]

    McKellar A R W, Welsh H L 1971 J. Chem. Phys. 55 595

    [9]

    Waaijer M, Reuss J 1981 Chem. Phys. 63 263

    [10]

    McKellar A R W 1982 Faraday Discuss. Chem. Soc. 73 89

    [11]

    McKellar A R W 1996 J. Chem. Phys. 105 2628

    [12]

    Bissonnette C, Chuaqui C E, Crowell K G, Le Roy R J, Wheatley R J, Meath W J 1996 J. Chem. Phys. 105 2639

    [13]

    Rulis M, Smith K M, Scoles G 1978 Can. J. Phys. 56 753

    [14]

    Toennies J P, Welz W, Wolf G 1979 J. Chem. Phys. 71 614

    [15]

    Buck U 1982 Faraday Discuss. Chem. Soc. 73 187

    [16]

    Buck U, Meyer H, Le Roy R J 1984 J. Chem. Phys. 80 5589

    [17]

    Le Roy R J, Carley J S 1980 Adv. Chem. Phys. 42 353

    [18]

    Tang K T, Toennies J P 1981 J. Chem. Phys. 74 1148

    [19]

    Rodwell W R, Scoles G 1982 J. Phys. Chem. 86 1053

    [20]

    Le Roy R J, Hutson J M 1987 J. Chem. Phys. 86 837

    [21]

    Williams H L, Szalewicz K, Jeziorski B, Moszynski R, Rybak S 1993 J. Chem. Phys. 98 1279

    [22]

    Moszynski R, Jeziorski B, Rybak S, Szalewicz K, Williams H L 1994 J. Chem. Phys. 100 5080

    [23]

    Bissonnette C, Chuaqui C E, Crowell K G, Le Roy R J, Wheatley R J, Meath W J 1996 J. Chem. Phys. 105 2639

    [24]

    Woon D E, Peterson K A, Dunning J T H 1998 J. Chem. Phys. 109 2233

    [25]

    Waldron L, Liu W K, Le Roy R J 2002 J. Mol. Stru. 591 245

    [26]

    Navrotskaya I, Geva E 2007 J. Phys. Chem. A 111460

    [27]

    Balakrishnan N, Hubartt B C, Ohlinger L, Forrey R C 2009 Phys. Rev. A 80 012704

    [28]

    Paolini S, Ohlinger L, Forrey R C 2011 Phys. Rev. A 83 042713

    [29]

    Espinho S, Felizardo E, Tatarova E, Dias F M, Ferreira C M 2013 Appl. Phys. Lett. 102 114101

    [30]

    Głaz W, Bancewicz T, Godet J L, Gustafsson M, Maroulis G, Haskopoulos A 2014 J. Chem. Phys. 141 074315

    [31]

    Gustafsson M, Głaz W, Bancewicz T, Godet J L, Maroulis G, Haskapoulos A 2014 J. Phys. Conference Series 548 012027

    [32]

    Pople J A, Head-Gordon M, Raghavachari K 1987 J. Chem. Phys. 87 5968

    [33]

    Kendall R A, Dunning J T H, Harrison R J 1992 J. Chem. Phys. 96 6796

    [34]

    Woon D E, Dunning J T H 1993 J. Chem. Phys. 98 1358

    [35]

    Boys S F, Bernadi F 1970 Mol. Phys. 19 533

    [36]

    Wang R K, Shen G X, Yu C R, Yang X D 2008 Acta Phys. Sin. 57 6932 (in Chinese) [汪荣凯, 沈光先, 余春日, 杨向东 2008 物理学报 57 6932]

    [37]

    Choi B H, Tang K T 1975 J. Chem. Phys. 63 1775

    [38]

    Yang X D 1992 Theoretical Calculation and Program of Atomic and Molecular Collision (Chengdu: University of Electronic Science and Technology Press) (in Chinese) [杨向东 1992 原子和分子碰撞理论计算及程序(成都: 电子科技大学出版社)]

    [39]

    Jeziorski B, Moszynski R, Szalewicz K 1994 Chem. Rev. 94 1887

    [40]

    Huber K P, Herzberg G 1979 Molecular Spectrum and Molecular Structure (IV) Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p250

    [41]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven J T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004

    [42]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) pp98-99 (in Chinese) [朱正和, 俞华根1997 分子结构与分子势能函数(北京: 科学出版社) 第98-99页]

    [43]

    Murrell J N, Carter S, Farantos S C, Huxley P, Varandas A J C 1984 Molecular Potential Energy Functions (New York: John Wiley & Sons Ltd) pp3-10

    [44]

    Bransden B H 1983 Atomic Collision Theory (Benjamin: Cummings Publishing Company) p12

    [45]

    Shen G X, Wang R K, Linghu R F, Yang X D 2008 Acta Phys. Sin. 57 155 (in Chinese) [沈光先, 汪荣凯, 令狐荣锋, 杨向东 2008 物理学报 57 155]

    [46]

    Shen G X, Wang R K, Linghu R F, Yang X D 2011 Acta Phys. Sin. 60 013101 (in Chinese) [沈光先, 汪荣凯, 令狐荣锋, 杨向东 2011 物理学报 60 013101]

  • [1]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [2]

    Chen J G, Wang R Q, Zhai Z, Chen J, Fu P M, Wang B B, Liu W M 2012 Phys. Rev. A 86 033417

    [3]

    Wei H, Le Roy R J, Wheatley R, Meath W J 2005 J. Chem. Phys. 122 084321

    [4]

    Li Y F, Linghu R F, Xu M 2013 J. Sichuan Univ. (Natural Science Edition) 50 1053 (in Chinese) [李应发, 令狐荣锋, 徐梅 2013 四川大学学报(自然科学版) 50 1053]

    [5]

    Zeng J Y 2000 Quantum Mechanics Vol. 1 (Third Edition) (Beijing: Science Press) pp650-651 (in Chinese) [曾谨言 2000 量子力学 卷I(第三版)(北京: 科学出版社) 第650-651页]

    [6]

    Gong M Y, Xu X T, Feng E Y 2011 Chin. Phys. B 20 113401

    [7]

    Gong M Y, Hu X L, Chen X, Niu M, Feng E Y 2010 Chin. Phys. B 19 063401

    [8]

    McKellar A R W, Welsh H L 1971 J. Chem. Phys. 55 595

    [9]

    Waaijer M, Reuss J 1981 Chem. Phys. 63 263

    [10]

    McKellar A R W 1982 Faraday Discuss. Chem. Soc. 73 89

    [11]

    McKellar A R W 1996 J. Chem. Phys. 105 2628

    [12]

    Bissonnette C, Chuaqui C E, Crowell K G, Le Roy R J, Wheatley R J, Meath W J 1996 J. Chem. Phys. 105 2639

    [13]

    Rulis M, Smith K M, Scoles G 1978 Can. J. Phys. 56 753

    [14]

    Toennies J P, Welz W, Wolf G 1979 J. Chem. Phys. 71 614

    [15]

    Buck U 1982 Faraday Discuss. Chem. Soc. 73 187

    [16]

    Buck U, Meyer H, Le Roy R J 1984 J. Chem. Phys. 80 5589

    [17]

    Le Roy R J, Carley J S 1980 Adv. Chem. Phys. 42 353

    [18]

    Tang K T, Toennies J P 1981 J. Chem. Phys. 74 1148

    [19]

    Rodwell W R, Scoles G 1982 J. Phys. Chem. 86 1053

    [20]

    Le Roy R J, Hutson J M 1987 J. Chem. Phys. 86 837

    [21]

    Williams H L, Szalewicz K, Jeziorski B, Moszynski R, Rybak S 1993 J. Chem. Phys. 98 1279

    [22]

    Moszynski R, Jeziorski B, Rybak S, Szalewicz K, Williams H L 1994 J. Chem. Phys. 100 5080

    [23]

    Bissonnette C, Chuaqui C E, Crowell K G, Le Roy R J, Wheatley R J, Meath W J 1996 J. Chem. Phys. 105 2639

    [24]

    Woon D E, Peterson K A, Dunning J T H 1998 J. Chem. Phys. 109 2233

    [25]

    Waldron L, Liu W K, Le Roy R J 2002 J. Mol. Stru. 591 245

    [26]

    Navrotskaya I, Geva E 2007 J. Phys. Chem. A 111460

    [27]

    Balakrishnan N, Hubartt B C, Ohlinger L, Forrey R C 2009 Phys. Rev. A 80 012704

    [28]

    Paolini S, Ohlinger L, Forrey R C 2011 Phys. Rev. A 83 042713

    [29]

    Espinho S, Felizardo E, Tatarova E, Dias F M, Ferreira C M 2013 Appl. Phys. Lett. 102 114101

    [30]

    Głaz W, Bancewicz T, Godet J L, Gustafsson M, Maroulis G, Haskopoulos A 2014 J. Chem. Phys. 141 074315

    [31]

    Gustafsson M, Głaz W, Bancewicz T, Godet J L, Maroulis G, Haskapoulos A 2014 J. Phys. Conference Series 548 012027

    [32]

    Pople J A, Head-Gordon M, Raghavachari K 1987 J. Chem. Phys. 87 5968

    [33]

    Kendall R A, Dunning J T H, Harrison R J 1992 J. Chem. Phys. 96 6796

    [34]

    Woon D E, Dunning J T H 1993 J. Chem. Phys. 98 1358

    [35]

    Boys S F, Bernadi F 1970 Mol. Phys. 19 533

    [36]

    Wang R K, Shen G X, Yu C R, Yang X D 2008 Acta Phys. Sin. 57 6932 (in Chinese) [汪荣凯, 沈光先, 余春日, 杨向东 2008 物理学报 57 6932]

    [37]

    Choi B H, Tang K T 1975 J. Chem. Phys. 63 1775

    [38]

    Yang X D 1992 Theoretical Calculation and Program of Atomic and Molecular Collision (Chengdu: University of Electronic Science and Technology Press) (in Chinese) [杨向东 1992 原子和分子碰撞理论计算及程序(成都: 电子科技大学出版社)]

    [39]

    Jeziorski B, Moszynski R, Szalewicz K 1994 Chem. Rev. 94 1887

    [40]

    Huber K P, Herzberg G 1979 Molecular Spectrum and Molecular Structure (IV) Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p250

    [41]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven J T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004

    [42]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) pp98-99 (in Chinese) [朱正和, 俞华根1997 分子结构与分子势能函数(北京: 科学出版社) 第98-99页]

    [43]

    Murrell J N, Carter S, Farantos S C, Huxley P, Varandas A J C 1984 Molecular Potential Energy Functions (New York: John Wiley & Sons Ltd) pp3-10

    [44]

    Bransden B H 1983 Atomic Collision Theory (Benjamin: Cummings Publishing Company) p12

    [45]

    Shen G X, Wang R K, Linghu R F, Yang X D 2008 Acta Phys. Sin. 57 155 (in Chinese) [沈光先, 汪荣凯, 令狐荣锋, 杨向东 2008 物理学报 57 155]

    [46]

    Shen G X, Wang R K, Linghu R F, Yang X D 2011 Acta Phys. Sin. 60 013101 (in Chinese) [沈光先, 汪荣凯, 令狐荣锋, 杨向东 2011 物理学报 60 013101]

  • [1] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性. 物理学报, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [2] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响. 物理学报, 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [3] 韩亚楠, 蒋刚, 范全平, 高玉峰, 杜际广. 激发态Li原子和基态Ar原子的相互作用势及低能弹性碰撞. 物理学报, 2015, 64(4): 043401. doi: 10.7498/aps.64.043401
    [4] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [5] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究. 物理学报, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [6] 令狐荣锋, 徐梅, 吕兵, 宋晓书, 杨向东. He原子与N2分子相互作用势的理论研究. 物理学报, 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [7] 胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲. 质子与Be原子的碰撞电离过程研究. 物理学报, 2012, 61(24): 243401. doi: 10.7498/aps.61.243401
    [8] 宫明艳. He原子和BH分子碰撞体系的转动激发能量转移. 物理学报, 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [9] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He-H2(D2,T2)碰撞体系振转相互作用势及分波截面的理论计算. 物理学报, 2011, 60(1): 013101. doi: 10.7498/aps.60.013101
    [10] 赵杏文, 程新路, 张红. 液态4He系统对关联函数的路径积分蒙特卡罗模拟. 物理学报, 2010, 59(1): 482-487. doi: 10.7498/aps.59.482
    [11] 黄金书, 罗鹏晖, 鲁公儒. 关于光子对撞机上底夸克对产生的研究. 物理学报, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [12] 汪荣凯, 沈光先, 杨向东. He-BH碰撞体系微分截面的理论计算. 物理学报, 2009, 58(8): 5335-5341. doi: 10.7498/aps.58.5335
    [13] 汪荣凯, 沈光先, 余春日, 杨向东. He-HF(DF,TF)碰撞体系散射截面的理论计算. 物理学报, 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [14] 李应乐, 黄际英, 王明军. Ku波段球体目标系的电磁复合散射研究. 物理学报, 2008, 57(12): 7630-7634. doi: 10.7498/aps.57.7630
    [15] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究. 物理学报, 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [16] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
    [17] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算. 物理学报, 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [18] 余春日, 宋晓书, 程新路, 杨向东, 申传胜. Ne-HF体系的相互作用势及散射截面的密耦计算. 物理学报, 2008, 57(6): 3446-3451. doi: 10.7498/aps.57.3446
    [19] 余春日, 黄时中, 史守华, 程新路, 杨向东. Ne-HBr复合物CCSD(T)势能面对转动非弹性分波截面的影响. 物理学报, 2007, 56(10): 5739-5745. doi: 10.7498/aps.56.5739
    [20] 余春日, 汪荣凯, 程新路, 杨向东. He-HF体系势能模型对散射截面影响的理论研究. 物理学报, 2007, 56(5): 2577-2584. doi: 10.7498/aps.56.2577
计量
  • 文章访问数:  3422
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-17
  • 修回日期:  2015-02-05
  • 刊出日期:  2015-07-05

Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算

  • 1. 贵州师范大学化学与材料科学学院, 贵阳 550001;
  • 2. 贵州师范大学物理与电子科学学院, 贵阳 550001
    基金项目: 国家自然科学基金(批准号:21101038,21461006,51472053)和贵州省科技厅与贵州师范大学联合基金(批准号:黔科合J字LKS[2009]01)资助的课题.

摘要: 用量子力学从头算的耦合族CCSD(T)方法, 使用相关一致基组aug-cc-pV5Z并加3s3p2d1f1g高斯键函数计算了Ar原子与H2分子的振转相互作用和电荷分布, 采用Boys和Bernardi提出的均衡法消除了基组重叠误差(BSSE). 然后用Tang-Toennies势能函数拟合得到Ar-H2体系相互作用势的解析表达式. 在该相互作用势下, 用密耦方法计算了Ar原子入射能量为83 meV时, Ar-H2(D2, T2)碰撞体系的散射截面. 计算Ar-D2体系的微分截面与实验值比较符合很好. 计算结果及分析表明, 在长程吸引势的散射中, 色散能起主要作用; 在短程排斥势的散射中, 交换能起重要作用. 当碰撞参数在0.27 nm至0.47 nm的范围时, Ar-H2(D2, T2)碰撞体系的径向偶极发生两次转向.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回