搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响

杨晨 左冠华 田壮壮 张玉驰 张天才

引用本文:
Citation:

线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响

杨晨, 左冠华, 田壮壮, 张玉驰, 张天才

Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure

Yang Chen, Zuo Guan-Hua, Tian Zhuang-Zhuang, Zhang Yu-Chi, Zhang Tian-Cai
PDF
HTML
导出引用
  • 利用适用于线极化Bell-Bloom测磁系统的布洛赫方程和含有自旋弛豫的速率方程, 以铯原子为研究对象, 分析了抽运光对磁场灵敏度的影响, 并在实验上分别采用与铯原子D1线和D2线共振的线偏光作为抽运光和探测光, 用充有缓冲气体的气室进行了实验. 实验结果与理论分析一致, 均表明只有在一定的光强范围内, 增大抽运光光强可以提高磁场灵敏度. 且利用这一方法分析了原子的自旋弛豫对磁场灵敏度的影响. 这项研究对于深入认识线极化的Bell-Bloom测磁系统, 以及如何通过优化系统实现磁场灵敏度的提高具有重要的意义.
    Magnetometry has already been widely used in mineral exploration, medical exploration and precision measurement physics. One is trying to improve the sensitivity of the magnetometer. One of the most widely used magnetometers is based on the Bell-Bloom structure, which can be realized by modulating the pump light. The sensitivity of the Bell-Bloom magnetometer is determined by the magnetic resonance linewidth (MRL) and the signal-to-noise under the condition of magnetic resonance (SNR). Both are affected by the pump intensity and the relaxation rate of the atoms. In order to achieve a higher sensitivity, how these factors affect the magnetic field measurement should be analyzed. In this paper, the influence of the pump light on the sensitivity of the linearly polarized Bell-Bloom magnetometer is investigated based on the Bloch equation with amplitude modulated pump beam and the rate equations with spin relaxation. The rate equations are obtained from the Liouville equation, and the theoretical analysis is based on the cesium. The pump beam is linearly polarized and is resonant to D1 transition of cesium. Both the direct pump (pump frequency is resonant to ${6^2}{{\rm{S}}_{1/2}}\;F = 4$${6^2}{{\rm{P}}_{1/2}}\;F' = 3$ transition) and the indirect pump (pump frequency is resonant to ${6^2}{{\rm{S}}_{1/2}}\;F = 3 $${6^2}{{\rm{P}}_{1/2}}\;F' = 4$ transition) are analyzed. The experiment is performed based on a 20-mm cube cesium vapour cell with 20-Torr helium as buffer gas. The linearly polarized probe beam is tuned to resonance to cesium D2 transition ${6^2}{{\rm{S}}_{1/2}}\;F = 4$$ {6^2}{{\rm{P}}_{3/2}}\;F' = 5$, and the intensity of the probe is 0.2 W/m2. The spectra of magnetic resonance are measured by using the lock-in detection with a scanning of the modulation frequency. Then the sensitivity can be obtained by measuring MRL and SNR. The experimental results show that the sensitivity and the pump intensity are related nonlinearly, which is coincident with theoretical result. Higher sensitivity can be obtained under the condition of indirect pump. In addition, the effect of atomic spin relaxation on sensitivity is also analyzed with the indirect pump beam. This work clarifies the dynamics of the Bell-Bloom magnetometer to some extent. The highest sensitivity obtained is $31.7\;{\rm{pT}}/\sqrt {{\rm{Hz}}} $ in our experiment, which can be optimized by using other kinds of vapour cells and different measuring methods.
      通信作者: 张玉驰, yczhang@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304502)和国家自然科学基金(批准号: 11634008, 11674203, 11574187, 61227902)资助的课题.
      Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grants Nos. 11634008, 11674203, 11574187, 61227902).
    [1]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227Google Scholar

    [2]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801Google Scholar

    [3]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [4]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 623Google Scholar

    [5]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280Google Scholar

    [6]

    Wang M L, Wang M B, Zhang G Y, Zhao K F 2016 Chin. Phys. B 25 060701Google Scholar

    [7]

    Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J, Prouty M 2012 J. Opt. Soc. Am. B 29 3398Google Scholar

    [8]

    Grujić Z D, Weis A 2013 Phys. Rev. A 88 012508Google Scholar

    [9]

    Mateos I, Patton B, Zhivun E, Budker D, Wurm D, Ramos-Castro J 2015 Sensors and Actuators A: Physical 224 147Google Scholar

    [10]

    Liu G, Li X, Sun X, Feng J, Ye C, Zhou X 2013 J. Magn. Reson. 237 158Google Scholar

    [11]

    Pustelny S, Wojciechowski A, Gring M, Kotyrba M, Zachorowski J, Gawlik W 2008 J. Appl. Phys. 103 063108Google Scholar

    [12]

    Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501Google Scholar

    [13]

    董海峰, 郝慧杰, 黄海超, 胡旭阳, 周斌权 2014 仪器仪表学报 35 2783

    Dong H F, Hao H J, Huang H C, Hu X Y, Zhou B Q 2014 Chin. J. Sci. Instrum. 35 2783

    [14]

    Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503Google Scholar

    [15]

    Wang M B, Zhao D F, Zhang G Y, Zhao K F 2017 Chin. Phys. B 26 100701Google Scholar

    [16]

    Lucivero V G, Anielski P, Gawlik W, Mitchell M W 2014 Rev. Sci. Instrum. 85 113108Google Scholar

    [17]

    Li W H, Peng X, Li S J, Liu C F, Guo H 2016 IEEE International Frequency Control Symposium (IFCS) New Orleans, USA, May 9−12, 2016 p1

    [18]

    Julsgaard B, Sherson J, Sørensen J L, Polzik E S 2004 J. Opt. B 6 5Google Scholar

    [19]

    Avila G, Giordano V, Candelier V, de Clercq E, Theobald G, Cerez P 1987 Phys. Rev. A 36 3719Google Scholar

    [20]

    张军海, 向康, 梅红松, 赵文辉, 黄宗军, 孙伟民 2015 光电子•激光 26 211

    Zhang J H, Xiang K, Mei H S, Zhao W H, Huang Z J, Sun W M 2015 J. Optoelectron. Laser 26 211

    [21]

    Ledbetter M P, Savukov I M, Acosta V M, Budker D, Romalis M V 2008 Phys. Rev. A 77 033408Google Scholar

    [22]

    Yang G Q, Zhang H B, Geng X X, Liang S Q, Zhu Y F, Mao J T, Huang G M, Li G X 2018 Opt. Express 26 30313Google Scholar

    [23]

    Rochester S M 2010 Ph. D. Dissertation (Berkeley: University of California

    [24]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [25]

    Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E, Hughes I G 2006 Phys. Rev. A 73 062509Google Scholar

    [26]

    薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀 2016 物理学报 65 044211Google Scholar

    Xue J, Qin J L, Zhang Y C, Li G, Zhang P F, Zhang T C, Peng K C 2016 Acta Phys. Sin. 65 044211Google Scholar

    [27]

    Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H, Weis A 2009 Appl. Phys. B 96 763

    [28]

    Li W H, Balabas M, Peng X, Pustelny S, Wickenbrock A, Guo H, Budker D 2017 J. Appl. Phys. 121 063104Google Scholar

    [29]

    Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V, Yashchuk V V 2005 Phys. Rev. A 72 023401Google Scholar

    [30]

    Cates G D, Schaefer S R, Happer W 1988 Phys. Rev. A 37 2877Google Scholar

    [31]

    Hasson K C, Cates G D, Lerman K, Bogorad P, Happer W 1990 Phys. Rev. A 41 3672Google Scholar

    [32]

    Seltzer S J, Romalis M V 2009 J. Appl. Phys. 106 114905Google Scholar

    [33]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [34]

    黄江 2016 量子光学学报 22 121

    Huang J 2016 J. Quantum Opt. 22 121

    [35]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E, Sushkov A O, Yashchuk V V 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [36]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 093602Google Scholar

  • 图 1  线极化的Bell-Bloom测磁系统基本原理图

    Fig. 1.  Bell-Bloom configuration with linearly polarized pump beam.

    图 2  抽运光与铯原子相互作用 (a)光与铯原子相互作用; (b)线偏振的抽运光与铯原子相互作用

    Fig. 2.  Interaction between pump light and cesium atoms: (a) Light-atom interaction; (b) interaction between linearly polarized pump light and cesium atoms.

    图 3  铯原子基态${6^2}{{\rm{S}}_{1/2}}\;F = 4$${6^2}{{\rm{S}}_{1/2}}\;F = 3$各个磁子能级的布居数随时间的演化 (a) ${I_0} = 0.5\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$时, 直接抽运的情况; (b) ${I_0} = 10\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$时, 间接抽运的情况

    Fig. 3.  Evolution of the populations in each Zeeman sublevels with time of cesium atoms’s ground state ${6^2}{{\rm{S}}_{1/2}}\;F = 4$ and ${6^2}{{\rm{S}}_{1/2}}\;F = 3$: (a) Results of direct pump with the pump intensity ${I_0} = 0.5\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$; (b) results of indirect pump with the pump intensity ${I_0} = 10\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$

    图 4  磁共振时, 信号幅度$P_y^{\max }$与约化磁场灵敏度${\text{δ}}{B_0}$随抽运光光强${I_0}$的变化 (a)直接抽运, $ \alpha =2{\text{π}} \times 103\; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $; (b)间接抽运, $ \alpha =2{\text{π}} \times 1 \; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $

    Fig. 4.  Signal amplitude $P_y^{\max }$ and relative sensitivity ${\text{δ}}{B_0}$ change along with the pump intensity ${I_0}$ under the condition of magnetic resonance: (a) Direct pump with $ \alpha =2{\text{π}} \times 103 \; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $; (b) indirect pump with $ \alpha = 2{\text{π}} \times1 \; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $

    图 5  实验装置图(SAS, 饱和吸收谱; VNDF, 连续可变衰减片; HWP, 半波片; PBS, 偏振分束器; HR, 高反镜; GTP, 格兰泰勒棱镜; WP, 渥拉斯顿棱镜; EO-AM, 电光振幅调制器; BPD, 平衡探测器; LIA, 锁相放大器; AC, 交流电源; DC, 直流电源; HC, 亥姆霍兹线圈; OSC, 示波器; SA, 频谱分析仪; P, 光的偏振方向)

    Fig. 5.  Experimental setup. SAS, saturated absorption spectrum; VNDF, variable neutral density filter; HWP, half wave plate; PBS, polarization beam splitter; HR, high reflectivity mirror; GTP, Glan-Tylor prism; WP, Wollaston prism; EO-AM, electro-optical amplitude modulator; BPD, balanced photodetector; LIA, lock-in amplifier; AC, alternating current power supply; DC, direct current power supply; HC, Helmholtz coils; OSC, oscilloscope; SA, spectrum analyzer; P, direction of light polarization

    图 6  直接抽运与间接抽运的磁共振谱线

    Fig. 6.  Spectra of magnetic resonance with direct pump and indirect pump.

    图 7  磁共振线宽$\Delta \omega $随抽运光光强${I_0}$的变化 (a)直接抽运, $ \alpha =2{\text{π}} \times (103.2 \pm 14.3)\;{\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $; (b)间接抽运, $ \alpha =2{\text{π}} \;\times $ $ (0.6907 \;\pm 0.1318)\;{\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $

    Fig. 7.  Variation of magnetic resonance linewidth $\Delta \omega $ with pump intensity ${I_0}$: (a) Direct pump, $ \alpha = 2{\text{π}}\times (103.2 \pm 14.3)\;{\rm{ Hz}} \;\times$ $ {{\rm{m}}^{\rm{2}}}{\rm{W}} $; (b) indirect pump, $ \alpha = 2{\text{π}} \times (0.6907 \pm 0.1318)\;{\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}$/W

    图 8  磁共振时, 信噪比SNR与磁场灵敏度${\text{δ}}B$随抽运光光强${I_0}$的变化 (a)直接抽运; (b)间接抽运

    Fig. 8.  Variation of SNR and sensitivity ${\text{δ}}B$ with the pump intensity ${I_0}$ under the condition of magnetic resonance: (a) Direct pump; (b) indirect pump

    图 9  在自旋弛豫率${r_0}$不同时, 间接抽运的约化磁场灵敏度${\text{δ}}{B_0}$随抽运光光强${I_0}$的变化

    Fig. 9.  sensitivity ${\text{δ}}{B_0}$ and pump intensity ${I_0}$ with indirect pump under the condition of different relaxation rate ${r_0}$.

  • [1]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227Google Scholar

    [2]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801Google Scholar

    [3]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [4]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 623Google Scholar

    [5]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280Google Scholar

    [6]

    Wang M L, Wang M B, Zhang G Y, Zhao K F 2016 Chin. Phys. B 25 060701Google Scholar

    [7]

    Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J, Prouty M 2012 J. Opt. Soc. Am. B 29 3398Google Scholar

    [8]

    Grujić Z D, Weis A 2013 Phys. Rev. A 88 012508Google Scholar

    [9]

    Mateos I, Patton B, Zhivun E, Budker D, Wurm D, Ramos-Castro J 2015 Sensors and Actuators A: Physical 224 147Google Scholar

    [10]

    Liu G, Li X, Sun X, Feng J, Ye C, Zhou X 2013 J. Magn. Reson. 237 158Google Scholar

    [11]

    Pustelny S, Wojciechowski A, Gring M, Kotyrba M, Zachorowski J, Gawlik W 2008 J. Appl. Phys. 103 063108Google Scholar

    [12]

    Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501Google Scholar

    [13]

    董海峰, 郝慧杰, 黄海超, 胡旭阳, 周斌权 2014 仪器仪表学报 35 2783

    Dong H F, Hao H J, Huang H C, Hu X Y, Zhou B Q 2014 Chin. J. Sci. Instrum. 35 2783

    [14]

    Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503Google Scholar

    [15]

    Wang M B, Zhao D F, Zhang G Y, Zhao K F 2017 Chin. Phys. B 26 100701Google Scholar

    [16]

    Lucivero V G, Anielski P, Gawlik W, Mitchell M W 2014 Rev. Sci. Instrum. 85 113108Google Scholar

    [17]

    Li W H, Peng X, Li S J, Liu C F, Guo H 2016 IEEE International Frequency Control Symposium (IFCS) New Orleans, USA, May 9−12, 2016 p1

    [18]

    Julsgaard B, Sherson J, Sørensen J L, Polzik E S 2004 J. Opt. B 6 5Google Scholar

    [19]

    Avila G, Giordano V, Candelier V, de Clercq E, Theobald G, Cerez P 1987 Phys. Rev. A 36 3719Google Scholar

    [20]

    张军海, 向康, 梅红松, 赵文辉, 黄宗军, 孙伟民 2015 光电子•激光 26 211

    Zhang J H, Xiang K, Mei H S, Zhao W H, Huang Z J, Sun W M 2015 J. Optoelectron. Laser 26 211

    [21]

    Ledbetter M P, Savukov I M, Acosta V M, Budker D, Romalis M V 2008 Phys. Rev. A 77 033408Google Scholar

    [22]

    Yang G Q, Zhang H B, Geng X X, Liang S Q, Zhu Y F, Mao J T, Huang G M, Li G X 2018 Opt. Express 26 30313Google Scholar

    [23]

    Rochester S M 2010 Ph. D. Dissertation (Berkeley: University of California

    [24]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [25]

    Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E, Hughes I G 2006 Phys. Rev. A 73 062509Google Scholar

    [26]

    薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀 2016 物理学报 65 044211Google Scholar

    Xue J, Qin J L, Zhang Y C, Li G, Zhang P F, Zhang T C, Peng K C 2016 Acta Phys. Sin. 65 044211Google Scholar

    [27]

    Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H, Weis A 2009 Appl. Phys. B 96 763

    [28]

    Li W H, Balabas M, Peng X, Pustelny S, Wickenbrock A, Guo H, Budker D 2017 J. Appl. Phys. 121 063104Google Scholar

    [29]

    Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V, Yashchuk V V 2005 Phys. Rev. A 72 023401Google Scholar

    [30]

    Cates G D, Schaefer S R, Happer W 1988 Phys. Rev. A 37 2877Google Scholar

    [31]

    Hasson K C, Cates G D, Lerman K, Bogorad P, Happer W 1990 Phys. Rev. A 41 3672Google Scholar

    [32]

    Seltzer S J, Romalis M V 2009 J. Appl. Phys. 106 114905Google Scholar

    [33]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [34]

    黄江 2016 量子光学学报 22 121

    Huang J 2016 J. Quantum Opt. 22 121

    [35]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E, Sushkov A O, Yashchuk V V 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [36]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 093602Google Scholar

  • [1] 杨煜林, 白乐乐, 张露露, 何军, 温馨, 王军民. 铷原子系综自旋噪声谱实验研究. 物理学报, 2020, 69(23): 233201. doi: 10.7498/aps.69.20201103
    [2] 李辉, 江敏, 朱振南, 徐文杰, 徐旻翔, 彭新华. 铷-氙气室原子磁力仪系统磁场测量能力的标定. 物理学报, 2019, 68(16): 160701. doi: 10.7498/aps.68.20190868
    [3] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [4] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [5] 张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维. 基于磁共振的水下非接触式电能传输系统建模与损耗分析. 物理学报, 2016, 65(4): 048401. doi: 10.7498/aps.65.048401
    [6] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [7] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量. 物理学报, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [8] 吴永晟, 王兵. (BEDT-TTF)[FeBr4]晶体的制备及其物理性质的研究. 物理学报, 2012, 61(5): 056104. doi: 10.7498/aps.61.056104
    [9] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [10] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [11] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制. 物理学报, 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [12] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [13] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响. 物理学报, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [14] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [15] 孙 征, 徐仲英, 阮学忠, 姬 扬, 孙宝权, 倪海桥. InAs单层和亚单层结构中的自旋动力学研究. 物理学报, 2007, 56(5): 2958-2961. doi: 10.7498/aps.56.2958
    [16] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [17] 孟庆安, 胡传民, 曹琪娟, 李子荣. 热致液晶CPHOB的有序参数与核磁共振弛豫. 物理学报, 1997, 46(10): 1961-1964. doi: 10.7498/aps.46.1961
    [18] 杨代文, 叶朝辉. 利用Raman磁共振研究四极核对AX体系弛豫行为的影响. 物理学报, 1991, 40(9): 1533-1538. doi: 10.7498/aps.40.1533
    [19] 潘少华, 厚美英. 自旋交换碰撞占主导时光泵硷金属原子的电子自旋弛豫. 物理学报, 1984, 33(8): 1177-1181. doi: 10.7498/aps.33.1177
    [20] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  6596
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-06
  • 修回日期:  2019-02-25
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回