搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶Willis环脑动脉瘤系统的混沌动力学分析与控制

高飞 李腾 童恒庆 欧卓玲

引用本文:
Citation:

分数阶Willis环脑动脉瘤系统的混沌动力学分析与控制

高飞, 李腾, 童恒庆, 欧卓玲

Chaotic dynamics of the fractional Willis aneurysm system and its control

Gao Fei, Li Teng, Tong Heng-Qing, Ou Zhuo-Ling
PDF
导出引用
  • 整数阶Willis环脑动脉瘤系统在描述表现出黏弹性的血液在具有繁杂弹性的血管系统内的复杂血流动力学机理上有一定局限性;鉴于此,本文利用分数阶Caputo微分及其理论,提出分数阶Willis环脑动脉瘤模型(FWAS):证明FWAS解的存在惟一性;利用相图和Poincar截面证明FWAS具有混沌特性,是其整数阶形式的合理推广;结合分岔图和倍周期分岔讨论脉冲压、系统阶次对FWAS的影响;采用通过非自治非线性系统的稳定性条件设计合理的控制器,以药物激励项函数作为脉冲函数进行脉冲控制这两种方法,对FWAS进行有效的控制.本文对FWAS的探讨将对脑动脉瘤的研究具有一定的理论指导意义.
    The Willis aneurysm system has some limitations in the description of the complex hemodynamic mechanism of blood with viscoelasticity. The fractional calculus has been used to depict some complex and disordered processes in organisms. Thus, we propose a fractional Willis aneurysm system (FWAS) byusing the Caputo fractional differential and its theory in the present article. Firstly, the existence and uniqueness of solution for FWAS are investigated theoretically. Then, we prove that the FWAS has a chaotic characteristic by analyzing the phase portraits and Poincar section, and it is a rational extension of its integer order form. We investigate the influences of pulse pressure and fractional order on the FWAS by means of bifurcation diagram and period doubling bifurcation. The results show that small changes of pulse pressure and fractional order canlead to a remarkable effect on the motion state of the FWAS. As the chaotic FWAS indicates that the brain blood flow is unstable, and the cerebral aneurysms are more likely to rupture in a very chaotic velocity field. Therefore we use two methods to control the chaotic FWAS. One is to design a suitable controller based on the stability theorem of fractional nonlinear non-autonomous system, and the other is to use a pulse control by taking the inspirit function of drug as impulse function. The numerical simulations show that the proposed two methods can control the blood flow velocity and speed up the periodic fluctuation within a small range, which shows that the cerebral aneurysm is not easy to rupture. The results obtained in this paper display that the fractional differential is a feasible method to characterize the Willis aneurysm system. The theoretical results in our article can provide some theoretical guidance for controlling and utilizing the actual FWAS system.
      通信作者: 高飞, hgaofei@gmail.com
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91324201)和湖北省自然科学基金(批准号:2014CFB865)资助的课题.
      Corresponding author: Gao Fei, hgaofei@gmail.com
    • Funds: Project supported by the Major Research plan of the National Natural Science Foundation of China (Grant No. 91324201) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB865).
    [1]

    Austin G 1971 Math. Biosci. 11 163

    [2]

    Cao J D, Liu T Y 1993 J. Biomath. 8 9 (in Chinese)[曹进德, 刘天一1993生物数学学报8 9]

    [3]

    Nieto J J, Torres A 2000 Nonlinear Anal. 40 513

    [4]

    Yang C H, Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 42 1 (in Chinese)[杨翠红, 朱思铭2003中山大学学报42 1]

    [5]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160506 (in Chinese)[古元凤, 肖剑2014物理学报63 160506]

    [6]

    Li Y M, Yu S 2008 J. Biomath. 23 235 (in Chinese)[李医民, 于霜2008生物数学学报23 235]

    [7]

    Sun M H, Xiao J, Dong H L 2016 Highlights of Sciencepaper Online 9 640 (in Chinese)[孙梦晗, 肖剑, 董海亮2016中国科技论文在线精品论文9 640]

    [8]

    Lu K Q, Liu J X 2009 Physics 38 453 (in Chinese)[陆坤权, 刘寄星2009物理38 453]

    [9]

    Zhu K Q 2009 Mech. Pract. 31 104 (in Chinese)[朱克勤2009力学与实践31 104]

    [10]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [11]

    Chen M, Jia L B, Yin X Z 2011 Chin. Phys. Lett. 28 88703

    [12]

    Dokoumetzidis A, Macheras P 2009 J. Pharmaceut. Biomed. 36 165

    [13]

    Verotta D 2010 J. Pharmaceut. Biomed. 37 257

    [14]

    Podlubny I 1999 Fractional Differential Equations (New York:Academic Press) pp41-120

    [15]

    Daftardar-Gejji V, Jafari H 2007 J. Math. Anal. Appl. 328 1026

    [16]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 060504 (in Chinese)[胡建兵, 赵灵冬2013物理学报62 060504]

    [17]

    Kai D, Ford N J 2004 Appl. Math. Comput. 154 621

    [18]

    Diethelm K, Ford N J, Freed A D 2005 Comput. Method Appl. M. 194 743

  • [1]

    Austin G 1971 Math. Biosci. 11 163

    [2]

    Cao J D, Liu T Y 1993 J. Biomath. 8 9 (in Chinese)[曹进德, 刘天一1993生物数学学报8 9]

    [3]

    Nieto J J, Torres A 2000 Nonlinear Anal. 40 513

    [4]

    Yang C H, Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 42 1 (in Chinese)[杨翠红, 朱思铭2003中山大学学报42 1]

    [5]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160506 (in Chinese)[古元凤, 肖剑2014物理学报63 160506]

    [6]

    Li Y M, Yu S 2008 J. Biomath. 23 235 (in Chinese)[李医民, 于霜2008生物数学学报23 235]

    [7]

    Sun M H, Xiao J, Dong H L 2016 Highlights of Sciencepaper Online 9 640 (in Chinese)[孙梦晗, 肖剑, 董海亮2016中国科技论文在线精品论文9 640]

    [8]

    Lu K Q, Liu J X 2009 Physics 38 453 (in Chinese)[陆坤权, 刘寄星2009物理38 453]

    [9]

    Zhu K Q 2009 Mech. Pract. 31 104 (in Chinese)[朱克勤2009力学与实践31 104]

    [10]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [11]

    Chen M, Jia L B, Yin X Z 2011 Chin. Phys. Lett. 28 88703

    [12]

    Dokoumetzidis A, Macheras P 2009 J. Pharmaceut. Biomed. 36 165

    [13]

    Verotta D 2010 J. Pharmaceut. Biomed. 37 257

    [14]

    Podlubny I 1999 Fractional Differential Equations (New York:Academic Press) pp41-120

    [15]

    Daftardar-Gejji V, Jafari H 2007 J. Math. Anal. Appl. 328 1026

    [16]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 060504 (in Chinese)[胡建兵, 赵灵冬2013物理学报62 060504]

    [17]

    Kai D, Ford N J 2004 Appl. Math. Comput. 154 621

    [18]

    Diethelm K, Ford N J, Freed A D 2005 Comput. Method Appl. M. 194 743

  • [1] 高飞, 胡道楠, 童恒庆, 王传美. 分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析. 物理学报, 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [2] 古元凤, 肖剑. Willis环脑动脉瘤系统的混沌分析及随机相位控制. 物理学报, 2014, 63(16): 160506. doi: 10.7498/aps.63.160506
    [3] 王跃钢, 文超斌, 杨家胜, 左朝阳, 崔祥祥. 基于无模型方法的混沌系统自适应控制. 物理学报, 2013, 62(10): 100504. doi: 10.7498/aps.62.100504
    [4] 来新泉, 李祖贺, 袁冰, 王慧, 叶强, 赵永瑞. 基于自适应斜坡补偿的双环电流模DC/DC混沌控制. 物理学报, 2010, 59(4): 2256-2263. doi: 10.7498/aps.59.2256
    [5] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制. 物理学报, 2010, 59(4): 2250-2255. doi: 10.7498/aps.59.2250
    [6] 许喆, 刘崇新, 杨韬. 基于Lyapunov方程的分数阶新混沌系统的控制. 物理学报, 2010, 59(3): 1524-1531. doi: 10.7498/aps.59.1524
    [7] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [8] 陈向荣, 刘崇新, 王发强, 李永勋. 分数阶Liu混沌系统及其电路实验的研究与控制. 物理学报, 2008, 57(3): 1416-1422. doi: 10.7498/aps.57.1416
    [9] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制. 物理学报, 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
    [10] 张 莹, 徐 伟, 孙晓娟, 方 同. 随机Bonhoeffer-Van der Pol系统的随机混沌控制. 物理学报, 2007, 56(10): 5665-5673. doi: 10.7498/aps.56.5665
    [11] 高 心, 刘兴文. 统一混沌系统的时延模糊控制. 物理学报, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [12] 王兴元, 武相军. 变形耦合发电机系统中的混沌控制. 物理学报, 2006, 55(10): 5083-5093. doi: 10.7498/aps.55.5083
    [13] 司马文霞, 刘 凡, 孙才新, 廖瑞金, 杨 庆. 基于改进的径向基函数神经网络的铁磁谐振系统混沌控制. 物理学报, 2006, 55(11): 5714-5720. doi: 10.7498/aps.55.5714
    [14] 韦笃取, 罗晓曙, 方锦清, 汪秉宏. 基于微分几何方法的永磁同步电动机的混沌运动的控制. 物理学报, 2006, 55(1): 54-59. doi: 10.7498/aps.55.54
    [15] 李 爽, 徐 伟, 李瑞红. 利用随机相位实现Duffing系统的混沌控制. 物理学报, 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [16] 董恩增, 陈增强, 袁著祉. 混沌系统的自适应多变量广义预测控制与同步. 物理学报, 2005, 54(10): 4578-4583. doi: 10.7498/aps.54.4578
    [17] 邹艳丽, 罗晓曙, 方锦清, 汪秉宏. 脉冲电压微分反馈法控制buck功率变换器中的混沌. 物理学报, 2003, 52(12): 2978-2984. doi: 10.7498/aps.52.2978
    [18] 刘 杰, 陈士华, 陆君安. 统一混沌系统的投影同步与控制. 物理学报, 2003, 52(7): 1595-1599. doi: 10.7498/aps.52.1595
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 李伟, 陈式刚. 用周期拍方法控制非线性耗散系统和保守系统的混沌. 物理学报, 2001, 50(10): 1862-1870. doi: 10.7498/aps.50.1862
计量
  • 文章访问数:  6670
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-09-06
  • 刊出日期:  2016-12-05

/

返回文章
返回