搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于射频场缀饰的直流电场Floquet-电磁诱导透明光谱特性研究

段昊男 姬中华 刘伟新 苏殿强 李经宽 赵延霆

引用本文:
Citation:

基于射频场缀饰的直流电场Floquet-电磁诱导透明光谱特性研究

段昊男, 姬中华, 刘伟新, 苏殿强, 李经宽, 赵延霆

Spectral characteristics of Floquet-electromagnetically induced transparency dressed by radio frequency field in a direct current electric field

DUAN Haonan, JI Zhonghua, LIU Weixin, SU Dianqiang, LI Jingkuan, ZHAO Yanting
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在室温铯原子气室中利用探测光(852 nm)与耦合光(510 nm)构建的里德伯阶梯型结构, 实现了基于射频场缀饰的直流电场Floquet-电磁诱导透明(Floquet-electromagnetically induced transparency, Floquet-EIT)光谱, 并研究了直流电场下的Floquet-EIT光谱特性. 实验发现, 仅射频电场作用时, EIT光谱只呈现偶数阶边带, 而当射频场与直流电场同时作用时, 实验观测到Floquet-EIT的一阶边带信号. 随着直流电场强度增大, 一阶边带幅值逐渐升高. 然而, 当直流电场增大到一定强度时, 强电场会导致边带间相互串扰, 使边带幅值下降, 但增大射频频率可以延缓直流电场对一阶边带的串扰影响. 最后对比Floquet-EIT光谱的边带幅值与DC-Stark光谱的频率偏移在微弱直流电场下的相对标准偏差, 发现前者在微弱电场下的测量精确度明显优于后者. 本文工作为直流电场和低频电场的量子传感测量提供了新思路.
    A Rydberg atom is a special type of atom characterized by a high principal quantum number. Electric field sensors based on Rydberg atoms have received widespread attention due to their high polarizability. However, there is currently little research on the use of Rydberg atoms for direct current (DC) or low-frequency electric fields, mainly due to the shielding effect of atomic vapor cells in low-frequency electric fields, which makes accurate measurement of the electric fields extremely challenging.In this paper, we construct a Rydberg ladder configuration by using probe laser at 852 nm and coupling laser at 510 nm in a room-temperature cesium vapor cell with integrated electrode plates, thereby enabling the realizing of a Floquet-EIT (electromagnetically induced transparency) spectrum dressed by a radio frequency (RF) field in the presence of a DC electric field. We further study the influence of DC electric field on spectral characteristic. Experimentally, it is observed that when only the RF electric field is applied, the EIT spectrum displays solely even-order sidebands. Furthermore, when both the RF field and the DC electric field are simultaneously present, the first-order sideband signal of the Floquet-EIT is observed. As the intensity of the DC electric field increases, the amplitude of the first-order sideband gradually increases. However, increasing the DC electric field to a sufficient magnitude induces sideband interference, which leads the sideband amplitudes to decrease. Furthermore, increasing the RF frequency can alleviate the interference effects induced by the DC electric field on the first-order sideband. Finally, comparing the relative standard deviation of the sideband amplitudes of the Floquet-EIT spectra with the frequency shifts of the DC-Stark spectra under weak DC electric fields, we find that the measurement accuracy of the former is significantly superior to that of the latter.This work makes use of a Cs atomic vapor cell with an integrated electrode to avoid shielding effects. By observing Floquet-EIT spectra, the response of the spectra to DC electric fields is investigated. This experiment provides novel insights into the quantum sensing measurements of DC and low-frequency electric fields.
  • 图 1  里德伯原子EIT能级示意图 (a)和实验装置图(b) OI, 光隔离器; ${\lambda {/ } 2}$, 半波片; PBS, 偏振分光棱镜; M, 852 nm高反镜; SG, 信号发生器; DM, 二向色镜; PD, 光电探测器; SP, 整形棱镜

    Fig. 1.  Schematic diagram of Rydberg EIT energy levels (a) and experimental setup diagram (b). OI, optical isolator; ${\lambda {/ } 2}$, half-wave plate; PBS, polarization beam splitter; M, 852 nm high reflectivity mirror; SG, signal Generator; DM, dichroic mirror; PD, photodiode; SP, shaping prism.

    图 2  原子气室中内置极板间的电场模拟分布(a)和模拟电压云图(b)

    Fig. 2.  Simulated distribution of electric field between the built-in plates in the atomic cell (a) and simulated voltage cloud map (b).

    图 3  基于DC-Stark效应的EIT光谱频移图 (a)不同DC电场强度下的EIT光谱; (b) DC电场强度和EIT光谱频移的关系

    Fig. 3.  EIT Spectral frequency shift based on DC Stark effect: (a) EIT spectra with different DC electric field intensity; (b) the relationship between DC electric field intensity and EIT spectral frequency shift.

    图 4  在200 MHz下基于AC-Stark效应, 不同RF电场强度的EIT光谱 (a)Erf = 0 V/cm; (b) Erf = 1.8 V/cm; (c) Erf = 3.04 V/cm

    Fig. 4.  EIT spectra based on the AC-Stark effect at 200 MHz with different electric field intensity: (a) Erf = 0 V/cm; (b) Erf = 1.8 V/cm; (c) Erf = 3.04 V/cm.

    图 5  Erf为2.58 V/cm的RF电场与DC电场同时作用产生的Floquet-EIT边带, 黑线和红线分别代表Edc为0.37 V/cm和0.74 V/cm的实验结果

    Fig. 5.  Floquet-EIT sidebands generated by the simultaneous action of RF electric field with Erf is 2.58 V/cm and DC. The black and red lines represent the experimental results with Edc values of 0.37 V/cm and 0.74 V/cm, respectively.

    图 6  不同DC电场强度对一阶边带的影响 (a) DC电场强度与一阶边带幅值的对应关系; (b) DC电场强度与一阶边带FWHM的对应关系

    Fig. 6.  The effect of different DC electric fields on the first-order sidebands: (a) The correspondence between DC electric field intensity and first-order sideband amplitude; (b) the correspondence between DC electric field intensity and first-order sideband FWHM.

    图 7  RF频率与Emax的关系

    Fig. 7.  The relationship between RF frequency and Emax.

    表 1  DC-Stark频移与Floquet-EIT边带幅值在不同DC电场下的相对标准偏差对比

    Table 1.  Comparison of the RSD of DC-Stark shift and Floquet-EIT sideband amplitude with different DC electric fields.

    不同方法的RSDDC电场强度/(V·cm–1)
    0.561.111.48
    DC-Stark的频移/%8.53.81.4
    Floquet-EIT的+1
    阶边带幅值%
    0.91.70.8
    下载: 导出CSV
  • [1]

    Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001Google Scholar

    [2]

    Teale C, Sherman J, Kitching J 2022 AVS Quantum Sci. 4 024403Google Scholar

    [3]

    Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F 2022 Chin. Phys. B 31 090703Google Scholar

    [4]

    Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 006007Google Scholar

    [5]

    Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228Google Scholar

    [6]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [7]

    Kai Y L, Hai T T, Shu Z Y, Chang J C, Xiao H L, Jie L, Xin D Z, Hui Y, Shi L Z 2020 Phys. Rev. A 101 053432Google Scholar

    [8]

    韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生 2024 物理学报 73 113201

    Han Y L, Liu B, Zhang K, Sun J F, Sun H, Ding D S 2024 Acta Phys. Sin. 73 113201

    [9]

    王延正, 武博, 付云起, 安强 2025 激光与光电子学进展 62 0302001Google Scholar

    Wang Y Z, Wu B, Fu Y Q, An Q 2025 Laser Optoelectron. Prog. 62 0302001Google Scholar

    [10]

    Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [11]

    吴逢川, 林沂, 武博, 付云起 2022 物理学报 71 207402Google Scholar

    Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402Google Scholar

    [12]

    Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045Google Scholar

    [13]

    Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024 Chin. Phys. B 33 050702Google Scholar

    [14]

    杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202Google Scholar

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202Google Scholar

    [15]

    李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电子学进展 58 1702002

    Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser Optoelectron. Prog. 58 1702002

    [16]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [17]

    Holloway C L, Prajapati N, Sherman J A, Rufenacht A, Artusio-Glimpse A B, Simons M T, Robinson A K, David S L M, Norrgard E B AVS Quantum Sci. 4 034404

    [18]

    Ouyang K, Shi Y S, Lei M W, Shi M 2023 Appl. Phys. Lett. 123 264001Google Scholar

    [19]

    Luo X B, Li L P, You L, Wu B 2014 New J. Phys. 16 013007Google Scholar

    [20]

    Rotunno A P, Berweger S, Prajapati N, Simons M T, Artusio-Glimpse A B, Holloway C L, Jayaseelan M, Potvliege R M, Adams C S 2023 J. Appl. Phys. 134 134501Google Scholar

    [21]

    Veit C, Epple G, Kübler H, Euser T G, Russell P S J, Löw R 2016 J. Phys. B 49 134005Google Scholar

    [22]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [23]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017Google Scholar

    [24]

    Song D N, Jiao Y C, Hu J L, Yin Y W, Li Z H, He Y H, Bai J X, Zhao J M, Jia S T 2024 Appl. Phys. Lett. 129 194001

    [25]

    Liu W X, Zhang L J, Wang T 2023 Chin. Phys. B 32 053203Google Scholar

    [26]

    Šibalić N, Pritchard J D, Weatherill K J, Adams C S 2017 Comput. Phys. Commun. 220 319Google Scholar

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析. 物理学报, doi: 10.7498/aps.74.20241362
    [2] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, doi: 10.7498/aps.73.20231778
    [3] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, doi: 10.7498/aps.73.20240397
    [4] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, doi: 10.7498/aps.72.20222286
    [5] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, doi: 10.7498/aps.72.20230039
    [6] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, doi: 10.7498/aps.72.20222264
    [7] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, doi: 10.7498/aps.71.20220456
    [8] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, doi: 10.7498/aps.71.20220972
    [9] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, doi: 10.7498/aps.70.20202077
    [10] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, doi: 10.7498/aps.70.20210102
    [11] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, doi: 10.7498/aps.69.20200369
    [12] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, doi: 10.7498/aps.68.20181938
    [13] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, doi: 10.7498/aps.67.20172052
    [14] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, doi: 10.7498/aps.67.20181168
    [15] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, doi: 10.7498/aps.66.103201
    [16] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, doi: 10.7498/aps.62.174207
    [17] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, doi: 10.7498/aps.62.064202
    [18] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, doi: 10.7498/aps.57.2895
    [19] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, doi: 10.7498/aps.57.4921
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  300
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-02-05
  • 上网日期:  2025-02-17

/

返回文章
返回