搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复动量表象方法研究29Ne基态结构与中子晕特征

王兴豪 罗雨轩 刘泉

引用本文:
Citation:

复动量表象方法研究29Ne基态结构与中子晕特征

王兴豪, 罗雨轩, 刘泉

Ground-State Structure and Neutron Halo in 29Ne: A Complex-Momentum Representation Study

WANG Xinghao, LUO Yuxuan, LIU Quan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,29Ne作为N=20“反转岛”核区的关键核素,其基态价中子组态表现出与传统壳模型预期(f7/2轨道主导)相悖的p3/2轨道主导特征,并可能具有晕核结构。本研究基于相对论框架下的复动量表象(CMR)方法,系统分析了29Ne在四极形变(β2)影响下的单粒子能级演化、轨道占据概率及径向密度分布。计算结果表明:在球形极限(β2=0)下,2p1/2和2p3/2能级显著下移至1f7/2能级下方,形成典型的壳层反转;当β2 ≥ 0.58时,价中子占据由1f7/2分裂而成的3/2[321]轨道,但其主要组分为p3/2(占比68%),且径向密度分布显著弥散,符合晕核特征。这些结果揭示了29Ne的p波主导机制与形变协同作用对晕结构形成的影响,为反转岛核区的壳层演化提供了新的理论依据。
    Purpose: The neutron-rich nucleus 29Ne, located in the N = 20 “island of inversion,” challenges traditional shell-model predictions by exhibiting a ground-state valence neutron configuration dominated by the 2p3/2 orbital instead of the expected 1f7/2 orbital. This study aims to unravel the mechanisms behind this shell inversion and explore the potential halo structure in 29Ne, leveraging the interplay between weak binding, deformation, and low-l orbital occupancy.
    Methods: We employ the complex-momentum representation (CMR) method within a relativistic framework, combining relativistic mean-field (RMF) theory with Woods-Saxon potentials to describe bound states, resonances, and continuum states. The model incorporates quadrupole deformation (β2) to analyze single-particle energy evolution, orbital mixing, and radial density distributions. Key parameters are calibrated to experimental data, including binding energies and neutron separation energies.
    Key Results:
    1. Shell Inversion: In the spherical limit (β2 = 0), the 2p1/2 and 2p3/2 orbitals drop below the 1f7/2 orbital, confirming the collapse of the N = 20 shell gap (see Figure below).
    2. Deformation-Driven Halo: For β2 ≥ 0.58, the valence neutron occupies the 3/2[321] orbital (derived from 1f7/2), but with 68% p3/2 components due to strong l-mixing. This orbital exhibits a diffuse radial density distribution, signaling a halo structure.
    3. Experimental Consistency: The predicted ground-state spin-parity (3/2-) and low separation energy (∼1 MeV) align with measurements, supporting 29Ne as a deformation-induced halo candidate.
    Conclusions: The study demonstrates that 29Ne’s anomalous structure arises from the synergy of p-wave dominance and quadrupole deformation, which reduces centrifugal barriers and enhances spatial dispersion. The CMR method provides a unified description of bound and resonant states, offering new insights into the island of inversion and halo formation. Future work will incorporate pairing correlations and experimental validation of density distributions.
    Significance: This work advances the understanding of exotic nuclear structures near drip lines and highlights the role of deformation in halo phenomena, with implications for future experiments probing neutron-rich nuclei.
  • [1]

    Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766.

    [2]

    Mayer M G 1949 Phys. Rev. 75 1969.

    [3]

    Ding B G, Zhang D L, Lu D H 2009 Acta Phys. Sin. 58 865 (in Chinese)[丁斌刚, 张大立, 鲁定 辉2009 物理学报58 865].

    [4]

    Sun S, An R, Qi M, Cao L G, Zhang F S 2025 Acta Phys. Sin. 74 032101 (in Chinese)[孙帅, 安荣, 祁淼, 曹李刚, 张丰收2025 物理学报74 032101].

    [5]

    Poves A, Retamosa J 1987 Phys. Lett. B 184 311.

    [6]

    Tripathi V, Tabor S L, Mantica P F, et al. 2007 Phys. Rev. C 76 021301(R).

    [7]

    Brown B A 2001 Prog. Part. Nucl. Phys. 47 517.

    [8]

    Otsuka T, Honma M, Mizusaki T, Shimizu N, Utsuno Y 2001 Prog. Part. Nucl. Phys. 47 319.

    [9]

    Liu H N, Lee J, Doornenbal P, et al. 2017 Phys. Lett. B 767 58.

    [10]

    Zhi Q J, Zhang X P 2009 Nucl. Phys. Rev. 26 275.

    [11]

    Warturbon E K, Becker J A, Brown B A 1990 Phys. Rev. C 41 1147.

    [12]

    Moiseyev N, Corcoran C 1979 Phys. Rev. A 20 814.

    [13]

    Liu J Y, Guo W J, Xing Y Z, Li X G, Zuo W 2006 Acta Phys. Sin. 55 1068 (in Chinese)[刘建业, 郭 文军, 邢永忠, 李希国, 左维2006 物理学报55 1068].

    [14]

    Tanihata I, Hamagaki H, Hashimoto O, et al. 1985 Phys. Rev. Lett. 55 2676.

    [15]

    Sagawa H 1992 Phys. Lett. B 286 7.

    [16]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963.

    [17]

    Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841.

    [18]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460.

    [19]

    Lin C J, Zhang H Q, Liu Z H, Wu Y W, Yang F, Ruan M 2003 Acta Phys. Sin. 52 823 (in Chinese)[林 承键, 张焕乔, 刘祖华, 吴岳伟, 杨峰, 阮明2003 物理学报52 823].

    [20]

    Zhang H F, Gao Y, Wang N, Li J Q, Zhao E G, Royer G 2012 Phys. Rev. C 85 014325.

    [21]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(R).

    [22]

    Hamamoto I 2010 Phys. Rev. C 81 021304(R).

    [23]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329.

    [24]

    Li C L, Duan Y W, Huang D Z 1994 Acta Phys. Sin. 43 14 (in Chinese)[李楚良, 段宜武, 黄笃之1994 物理学报43 14].

    [25]

    Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229 (in Chinese)[任中洲, 徐躬耦1991 物理学报40 1229].

    [26]

    Tanihata I, Savajols H, Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215.

    [27]

    Meng J, Zhou S G 2015 J. Phys. G: Nucl. Part. Phys. 42 093101.

    [28]

    Nakamura T, Kobayashi N, Kondo Y, et al. 2014 Phys. Rev. Lett. 112 142501.

    [29]

    Hong J, Bertulani C A, Kruppa A T 2017 Phys. Rev. C 96 064603.

    [30]

    Kobayashi N, Nakamura T, Kondo Y, et al. 2016 Phys. Rev. C 93 014613.

    [31]

    Li J G, Michel N, Li H H, Zuo W 2022 Phys. Lett. B 832 137225.

    [32]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29.

    [33]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763.

    [34]

    Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: Wiley).

    [35]

    Cao L J, Ma Z Y 2002 Phys. Rev. C 66 024311.

    [36]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530.

    [37]

    Masui H, Aoyama S, Myo T, Katō K, Ikeda K 2000 Nucl. Phys. A 673 207.

    [38]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501.

    [39]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323.

    [40]

    Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311.

    [41]

    Tanaka N, Suzuki Y, Varga K 1997 Phys. Rev. C 56 562.

    [42]

    Zhang S S, Smith M S, Arbanas G, Kozub R L 2012 Phys. Rev. C 86 032802(R).

    [43]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30.

    [44]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324.

    [45]

    Hazi A U, Taylor H S 1970 Phys. Rev. A 1 1109.

    [46]

    Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932.

    [47]

    Mandelshtam V A, Taylor H S, Rayboy V, Moiseyev N 1994 Phys. Rev. A 50 2764.

    [48]

    Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312.

    [49]

    Yang W, Ding S Y, Sun B Y 2024 Acta Phys. Sin. 73 062102 (in Chinese)[杨威, 丁士缘, 孙保元2024 物理学报73 062102].

    [50]

    Matsuo M 2001 Nucl. Phys. A 696 371.

    [51]

    Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321.

    [52]

    Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321.

    [53]

    Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105.

    [54]

    Odsuren M, Kikuchi Y, Myo T, Khuukhenkhuu G, Masui H, Katō K 2017 Phys. Rev. C 95 064305.

    [55]

    Myo T, Kikuchi Y, Masui H, Katō K 2014 Prog. Part. Nucl. Phys. 79 1.

    [56]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318.

    [57]

    Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101 (in Chinese)[刘野, 陈寿万, 郭建友2012 物理学报61 112101].

    [58]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502.

    [59]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311.

    [60]

    Guo J Y, Liu Q, Niu Z M, Heng T H, Wang Z Y, Shi M, Cao X N 2018 Nucl. Phys. Rev. 35 401.

    [61]

    Dai H M, Cao X N, Liu Q, Guo J Y 2020 Nucl. Phys. Rev. 37 574.

    [62]

    Luo Y X, Fossez K, Liu Q, Guo J Y 2021 Phys. Rev. C 104 014307.

    [63]

    Wei Y M, Liu Q 2023 Nucl. Phys. Rev. 40 188.

    [64]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2001 Phys. Rev. Lett. 86 5015.

    [65]

    Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2002 Phys. Rev. C 65 034307.

    [66]

    Lalazissis G A, König J, Ring P 1997 Phys. Rev. C 55 540.

    [67]

    Wang X W, Guo J Y 2019 Acta Phys. Sin. 68 092101 (in Chinese)[王晓伟, 郭建友2019 物理学报68 092101].

    [68]

    Luo Y X, Liu Q, Guo J Y 2023 Phys. Rev. C 108 024320.

    [69]

    Cao X N, Ding K M, Shi M, Liu Q, Guo J Y 2020 Phys. Rev. C 102 044313.

    [70]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316.

    [71]

    Meng J 1993 Acta Phys. Sin. 42 368 (in Chinese)[孟杰1993 物理学报42 368].

    [72]

    Sun T T, Liu Z X, Qian L, Wang B, Zhang W 2019 Phys. Rev. C 99 054316.

    [73]

    Kubota Y, Corsi A, Authelet G, et al. 2020 Phys. Rev. Lett. 125 252501.

    [74]

    Ragnarsson I, Nilsson S G, Sheline R K. 1978 Phys. Rep. 45 1.

    [75]

    Butler P. A., Nazarewicz W. 1996 Rev. Mod. Phys. 68 349.

  • [1] 杨威, 丁士缘, 孙保元. 基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 物理学报, doi: 10.7498/aps.73.20231632
    [2] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光. 物理学报, doi: 10.7498/aps.62.164207
    [3] 刘野, 陈寿万, 郭建友. 复标度方法对原子核单粒子共振态的研究. 物理学报, doi: 10.7498/aps.61.112101
    [4] 王刚, 方向正, 郭建友. 相对论平均场理论对Pt同位素形状演化的研究. 物理学报, doi: 10.7498/aps.61.102101
    [5] 隋兵才, 方粮, 张超. 单岛单电子晶体管的电导分析. 物理学报, doi: 10.7498/aps.60.077302
    [6] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究. 物理学报, doi: 10.7498/aps.60.112101
    [7] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, doi: 10.7498/aps.58.8302
    [8] 董建敏, 李君清, 苏昕宁, 王艳召, 张鸿飞, 左维. 致密天体中电子气体对原子核结构的影响. 物理学报, doi: 10.7498/aps.58.2294
    [9] 陈 丽, 程玉民. 弹性力学的复变量重构核粒子法. 物理学报, doi: 10.7498/aps.57.1
    [10] 陈 丽, 程玉民. 瞬态热传导问题的复变量重构核粒子法. 物理学报, doi: 10.7498/aps.57.6047
    [11] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究. 物理学报, doi: 10.7498/aps.56.3839
    [12] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应. 物理学报, doi: 10.7498/aps.56.1339
    [13] 廖高华, 翁甲强, 成丽春, 方锦清. 束晕-混沌控制中的粒子跟踪模拟研究. 物理学报, doi: 10.7498/aps.54.35
    [14] 罗向东, 郑仁蓉, 朱顺泉. A=100区奇奇核旋称反转. 物理学报, doi: 10.7498/aps.52.1891
    [15] 沈水法, 石双惠, 顾嘉辉, 刘静怡, 沈文庆. Rb晕带signature反转的机理. 物理学报, doi: 10.7498/aps.52.48
    [16] 文家焱, 郑仁蓉, 朱顺泉. A=80区奇奇核的晕带能谱计算. 物理学报, doi: 10.7498/aps.48.433
    [17] 沈俊, 徐在新. 有限温度场论单粒子不可约图形的零动量行为. 物理学报, doi: 10.7498/aps.41.1072
    [18] 郑少白, A. J. WOOTTON. 试探粒子横越单一磁岛的扩散. 物理学报, doi: 10.7498/aps.39.94
    [19] 林尊琪, 陈文华, 余文炎, 谭维翰, 郑玉霞, 王关志, 顾敏, 章辉煌, 程瑞华, 崔季秀, 邓锡铭. MgⅪ 1s3p-1s4p能级间平均高温及高密度条件下的粒子数反转. 物理学报, doi: 10.7498/aps.37.1236
    [20] 储连元, 王德焴, 于敏. 满壳层外一个粒子原子核的能级. 物理学报, doi: 10.7498/aps.15.447
计量
  • 文章访问数:  174
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-12

/

返回文章
返回