-
近年来,29Ne作为N=20“反转岛”核区的关键核素,其基态价中子组态表现出与传统壳模型预期(f7/2轨道主导)相悖的p3/2轨道主导特征,并可能具有晕核结构。本研究基于相对论框架下的复动量表象(CMR)方法,系统分析了29Ne在四极形变(β2)影响下的单粒子能级演化、轨道占据概率及径向密度分布。计算结果表明:在球形极限(β2=0)下,2p1/2和2p3/2能级显著下移至1f7/2能级下方,形成典型的壳层反转;当β2 ≥ 0.58时,价中子占据由1f7/2分裂而成的3/2[321]轨道,但其主要组分为p3/2(占比68%),且径向密度分布显著弥散,符合晕核特征。这些结果揭示了29Ne的p波主导机制与形变协同作用对晕结构形成的影响,为反转岛核区的壳层演化提供了新的理论依据。
-
关键词:
- 反转岛 /
- 晕核 /
- 复动量表象(CMR)方法 /
- 单粒子能级
Purpose: The neutron-rich nucleus 29Ne, located in the N = 20 “island of inversion,” challenges traditional shell-model predictions by exhibiting a ground-state valence neutron configuration dominated by the 2p3/2 orbital instead of the expected 1f7/2 orbital. This study aims to unravel the mechanisms behind this shell inversion and explore the potential halo structure in 29Ne, leveraging the interplay between weak binding, deformation, and low-l orbital occupancy.
Methods: We employ the complex-momentum representation (CMR) method within a relativistic framework, combining relativistic mean-field (RMF) theory with Woods-Saxon potentials to describe bound states, resonances, and continuum states. The model incorporates quadrupole deformation (β2) to analyze single-particle energy evolution, orbital mixing, and radial density distributions. Key parameters are calibrated to experimental data, including binding energies and neutron separation energies.
Key Results:
1. Shell Inversion: In the spherical limit (β2 = 0), the 2p1/2 and 2p3/2 orbitals drop below the 1f7/2 orbital, confirming the collapse of the N = 20 shell gap (see Figure below).
2. Deformation-Driven Halo: For β2 ≥ 0.58, the valence neutron occupies the 3/2[321] orbital (derived from 1f7/2), but with 68% p3/2 components due to strong l-mixing. This orbital exhibits a diffuse radial density distribution, signaling a halo structure.
3. Experimental Consistency: The predicted ground-state spin-parity (3/2-) and low separation energy (∼1 MeV) align with measurements, supporting 29Ne as a deformation-induced halo candidate.
Conclusions: The study demonstrates that 29Ne’s anomalous structure arises from the synergy of p-wave dominance and quadrupole deformation, which reduces centrifugal barriers and enhances spatial dispersion. The CMR method provides a unified description of bound and resonant states, offering new insights into the island of inversion and halo formation. Future work will incorporate pairing correlations and experimental validation of density distributions.
Significance: This work advances the understanding of exotic nuclear structures near drip lines and highlights the role of deformation in halo phenomena, with implications for future experiments probing neutron-rich nuclei.-
Keywords:
- Island Of Inversion /
- Halo Nucleus /
- Complex Momentum Representation Method /
- Single Particle Energy Level
-
[1] Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766.
[2] Mayer M G 1949 Phys. Rev. 75 1969.
[3] Ding B G, Zhang D L, Lu D H 2009 Acta Phys. Sin. 58 865 (in Chinese)[丁斌刚, 张大立, 鲁定 辉2009 物理学报58 865].
[4] Sun S, An R, Qi M, Cao L G, Zhang F S 2025 Acta Phys. Sin. 74 032101 (in Chinese)[孙帅, 安荣, 祁淼, 曹李刚, 张丰收2025 物理学报74 032101].
[5] Poves A, Retamosa J 1987 Phys. Lett. B 184 311.
[6] Tripathi V, Tabor S L, Mantica P F, et al. 2007 Phys. Rev. C 76 021301(R).
[7] Brown B A 2001 Prog. Part. Nucl. Phys. 47 517.
[8] Otsuka T, Honma M, Mizusaki T, Shimizu N, Utsuno Y 2001 Prog. Part. Nucl. Phys. 47 319.
[9] Liu H N, Lee J, Doornenbal P, et al. 2017 Phys. Lett. B 767 58.
[10] Zhi Q J, Zhang X P 2009 Nucl. Phys. Rev. 26 275.
[11] Warturbon E K, Becker J A, Brown B A 1990 Phys. Rev. C 41 1147.
[12] Moiseyev N, Corcoran C 1979 Phys. Rev. A 20 814.
[13] Liu J Y, Guo W J, Xing Y Z, Li X G, Zuo W 2006 Acta Phys. Sin. 55 1068 (in Chinese)[刘建业, 郭 文军, 邢永忠, 李希国, 左维2006 物理学报55 1068].
[14] Tanihata I, Hamagaki H, Hashimoto O, et al. 1985 Phys. Rev. Lett. 55 2676.
[15] Sagawa H 1992 Phys. Lett. B 286 7.
[16] Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963.
[17] Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841.
[18] Meng J, Ring P 1998 Phys. Rev. Lett. 80 460.
[19] Lin C J, Zhang H Q, Liu Z H, Wu Y W, Yang F, Ruan M 2003 Acta Phys. Sin. 52 823 (in Chinese)[林 承键, 张焕乔, 刘祖华, 吴岳伟, 杨峰, 阮明2003 物理学报52 823].
[20] Zhang H F, Gao Y, Wang N, Li J Q, Zhao E G, Royer G 2012 Phys. Rev. C 85 014325.
[21] Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(R).
[22] Hamamoto I 2010 Phys. Rev. C 81 021304(R).
[23] Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329.
[24] Li C L, Duan Y W, Huang D Z 1994 Acta Phys. Sin. 43 14 (in Chinese)[李楚良, 段宜武, 黄笃之1994 物理学报43 14].
[25] Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229 (in Chinese)[任中洲, 徐躬耦1991 物理学报40 1229].
[26] Tanihata I, Savajols H, Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215.
[27] Meng J, Zhou S G 2015 J. Phys. G: Nucl. Part. Phys. 42 093101.
[28] Nakamura T, Kobayashi N, Kondo Y, et al. 2014 Phys. Rev. Lett. 112 142501.
[29] Hong J, Bertulani C A, Kruppa A T 2017 Phys. Rev. C 96 064603.
[30] Kobayashi N, Nakamura T, Kondo Y, et al. 2016 Phys. Rev. C 93 014613.
[31] Li J G, Michel N, Li H H, Zuo W 2022 Phys. Lett. B 832 137225.
[32] Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29.
[33] Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763.
[34] Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: Wiley).
[35] Cao L J, Ma Z Y 2002 Phys. Rev. C 66 024311.
[36] Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530.
[37] Masui H, Aoyama S, Myo T, Katō K, Ikeda K 2000 Nucl. Phys. A 673 207.
[38] Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501.
[39] Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323.
[40] Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311.
[41] Tanaka N, Suzuki Y, Varga K 1997 Phys. Rev. C 56 562.
[42] Zhang S S, Smith M S, Arbanas G, Kozub R L 2012 Phys. Rev. C 86 032802(R).
[43] Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30.
[44] Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324.
[45] Hazi A U, Taylor H S 1970 Phys. Rev. A 1 1109.
[46] Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932.
[47] Mandelshtam V A, Taylor H S, Rayboy V, Moiseyev N 1994 Phys. Rev. A 50 2764.
[48] Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312.
[49] Yang W, Ding S Y, Sun B Y 2024 Acta Phys. Sin. 73 062102 (in Chinese)[杨威, 丁士缘, 孙保元2024 物理学报73 062102].
[50] Matsuo M 2001 Nucl. Phys. A 696 371.
[51] Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321.
[52] Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321.
[53] Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105.
[54] Odsuren M, Kikuchi Y, Myo T, Khuukhenkhuu G, Masui H, Katō K 2017 Phys. Rev. C 95 064305.
[55] Myo T, Kikuchi Y, Masui H, Katō K 2014 Prog. Part. Nucl. Phys. 79 1.
[56] Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318.
[57] Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101 (in Chinese)[刘野, 陈寿万, 郭建友2012 物理学报61 112101].
[58] Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502.
[59] Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311.
[60] Guo J Y, Liu Q, Niu Z M, Heng T H, Wang Z Y, Shi M, Cao X N 2018 Nucl. Phys. Rev. 35 401.
[61] Dai H M, Cao X N, Liu Q, Guo J Y 2020 Nucl. Phys. Rev. 37 574.
[62] Luo Y X, Fossez K, Liu Q, Guo J Y 2021 Phys. Rev. C 104 014307.
[63] Wei Y M, Liu Q 2023 Nucl. Phys. Rev. 40 188.
[64] Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2001 Phys. Rev. Lett. 86 5015.
[65] Alberto P, Fiolhais M, Malheiro M, Delfino A, Chiapparini M 2002 Phys. Rev. C 65 034307.
[66] Lalazissis G A, König J, Ring P 1997 Phys. Rev. C 55 540.
[67] Wang X W, Guo J Y 2019 Acta Phys. Sin. 68 092101 (in Chinese)[王晓伟, 郭建友2019 物理学报68 092101].
[68] Luo Y X, Liu Q, Guo J Y 2023 Phys. Rev. C 108 024320.
[69] Cao X N, Ding K M, Shi M, Liu Q, Guo J Y 2020 Phys. Rev. C 102 044313.
[70] Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316.
[71] Meng J 1993 Acta Phys. Sin. 42 368 (in Chinese)[孟杰1993 物理学报42 368].
[72] Sun T T, Liu Z X, Qian L, Wang B, Zhang W 2019 Phys. Rev. C 99 054316.
[73] Kubota Y, Corsi A, Authelet G, et al. 2020 Phys. Rev. Lett. 125 252501.
[74] Ragnarsson I, Nilsson S G, Sheline R K. 1978 Phys. Rep. 45 1.
[75] Butler P. A., Nazarewicz W. 1996 Rev. Mod. Phys. 68 349.
计量
- 文章访问数: 174
- PDF下载量: 4
- 被引次数: 0