搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型

杨威 丁士缘 孙保元

引用本文:
Citation:

基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型

杨威, 丁士缘, 孙保元

Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method

Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan
PDF
HTML
导出引用
  • 利用坐标空间的实稳定方法, 在相对论 Hartree-Fock (RHF)理论框架下发展了原子核单粒子共振态结构模型. 具体以120Sn的低激发中子共振态为例, 探讨了交换项在影响共振能量、宽度以及自旋-轨道劈裂等性质中的作用. 相较于一般的相对论平均场(RMF)理论, RHF中交换项的引入改变了核介质中有效核力的动力学平衡机制, 进而影响共振态单粒子势的描述. 对于一般的宽共振态, 这可能导致相对更低的共振能量和更小的共振宽度. 此外, 对120Sn共振态中$\nu {\mathrm{i}}_{13/2}$$\nu {\mathrm{i}}_{11/2}$自旋伙伴态, 还分析了交换项对其自旋-轨道劈裂的相关效应. 与束缚态情形相比, 共振态中自旋伙伴态的波函数可能存在显著区别, 单粒子有效势与能量也相应发生改变. 结果表明, 不仅自旋-轨道相互作用, 单粒子有效势中其他成分也是影响共振态自旋-轨道劈裂的重要因素.
    With the development of radioactive ion beam devices along with associated nuclear experimental detection technologies, the research areas in atomic nuclei have been further expanded, illustrating many new aspects of nuclear excitation as well as the physics of exotic nuclei far from the β-stability line. For weakly bound nuclei, the Fermi surface may lie near the continuum, which facilitates the easy scattering of valence nucleons into the continuum to occupy the resonance state. These continuum effects are of crucial importance in explaining the unusual structure of unstable nuclei. In this work, with the real stabilization method in coordinate space, nuclear structure model for single-particle resonances is developed within the framework of the relativistic Hartree-Fock (RHF) theory. In order to extract potential single-particle resonance structures, we study the evolution of single-particle states with box size in the continuum. To avoid the instability of nuclear binding energy, the pairing correlations are not taken into account in the calculation. As an important motivation, the roles of Fock terms in determining the energy, widths and spin-orbit splitting are discussed for low-lying neutron resonance states of $^{120}$Sn. By comparing with the relativistic mean field (RMF) model, it is found that the inclusion of exchange terms in the RHF model changes the in-medium balance of nuclear interactions and the equilibrium of nuclear dynamics, which in turn affects the description of the single-particle effective potential. For several neutron resonance states in $^{120}$Sn with finite resonant width, RHF model predicts lower resonant energy and smaller widths than RMF. For the single-particle states around the continuum threshold, the featured signals of resonance can depend sensitively on the effective interactions. In addition, for the spin-partner states $\nu {\mathrm{i}}_{13/2}$ and $\nu {\mathrm{i}}_{11/2}$ in resonance states, the effect of Fock terms on their spin-orbit splitting is analyzed. In comparison with the bound states, the wave functions of resonant spin-partner states can differ remarkably from each other, changing the effective potential and single-particle energies correspondingly. Thus, additional components in the single-particle effective potential may also contribute to the spin-orbit splitting of resonance states, aside from the spin-orbit interaction. In order to elucidate the mechanism of Fock term in single-particle resonance physics, in the subsequent study more numerical techniques that have been recently developed will be incorporated into the RHF methodology.
      通信作者: 孙保元, sunby@lzu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: lzujbky-2022-sp02, lzujbky-2023-stlt01)和国家自然科学基金(批准号: 11875152)资助的课题.
      Corresponding author: Sun Bao-Yuan, sunby@lzu.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant Nos. lzujbky-2022-sp02, lzujbky-2023-stlt01) and the National Natural Science Foundation of China (Grant No. 11875152).
    [1]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460Google Scholar

    [2]

    Dobaczewski J, Nazarewicz W, Werner T R, Berger J F, Chinn C R, Dechargé J 1996 Phys. Rev. C 53 2809Google Scholar

    [3]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [4]

    Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841Google Scholar

    [5]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470Google Scholar

    [6]

    Liu W, Lou J L, Ye Y L, Pang D Y 2020 Nucl. Sci. Tech. 31 20Google Scholar

    [7]

    Li W J, Ma Y G, Zhang G Q, et al 2019 Nucl. Sci. Tech. 30 180Google Scholar

    [8]

    Khumalo T C, Pellegri L, Wiedeking M, et al. 2023 J. Phys.: Conf. Ser. 2586 012065Google Scholar

    [9]

    Curutchet P, Vertse T, Liotta R J 1989 Phys. Rev. C 39 1020Google Scholar

    [10]

    Cao L G, Ma Z Y 2002 Phys. Rev. C 66 024311Google Scholar

    [11]

    苟秉聪 1993 物理学报 42 223Google Scholar

    Gou B C 1993 Acta Phys. Sin. 42 223Google Scholar

    [12]

    孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪 2019 物理学报 68 163101Google Scholar

    Sun Y, Hu F, Sang C C, Mei M F, Liu D D, Gou B C 2019 Acta Phys. Sin. 68 163101Google Scholar

    [13]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [14]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763Google Scholar

    [15]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [16]

    Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: John Wiley & Son) p240

    [17]

    Kukulin V I, Krasnopl’sky V M, Horácek J 1989 Theory of Resonances: Principles and Applications (Dordrecht: Kluwer Academic) p219

    [18]

    Yang S C, Meng J, Zhou S G 2001 Chin. Phys. Lett. 18 196Google Scholar

    [19]

    Tanaka N, Suzuki Y, Varga K, Lovas R G 1999 Phys. Rev. C 59 1391Google Scholar

    [20]

    Cattapan G, Maglione E 2000 Phys. Rev. C 61 067301Google Scholar

    [21]

    Gyarmati B, Kruppa A T 1986 Phys. Rev. C 34 95Google Scholar

    [22]

    Kruppa A T, Heenen P H, Flocard H, Liotta R J 1997 Chin. Phys. Lett. 79 2217Google Scholar

    [23]

    Arai K 2006 Phys. Rev. C 74 064311Google Scholar

    [24]

    Guo J Y, Yu M, Wang J, Yao B M, Jiao P 2010 Comput. Phys. Commun. 181 550Google Scholar

    [25]

    Maier C H, Cederbaum L S, Domcke W 1980 J. Phys. B 13 L119Google Scholar

    [26]

    Taylor H S, Hazi A U 1970 Phys. Rev. A 1 1109Google Scholar

    [27]

    Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932Google Scholar

    [28]

    Mandelshtam V A, Taylor H S, Ryaboy V, Moiseyev N 1994 Phys. Rev. A 50 2764Google Scholar

    [29]

    Serot B D, Walecka J D 1986 Adv. Nucl. Phys. 16 1

    [30]

    Reinhard P G 1989 Rep. Prog. Phys. 52 439Google Scholar

    [31]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193Google Scholar

    [32]

    Vretenar D, Afanasjev A, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [33]

    Zhang S S, Meng J, Zhou S G, Hillhouse G C 2004 Phys. Rev. C 70 034308Google Scholar

    [34]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [35]

    刘野, 陈寿万, 郭建友 2012 物理学报 61 112101Google Scholar

    Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101Google Scholar

    [36]

    Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312Google Scholar

    [37]

    张力, 周善贵, 孟杰, 赵恩广 2007 物理学报 56 3839Google Scholar

    Zhang L, Zhou S G, Meng J, Zhao E G 2007 Acta Phys. Sin. 56 3839Google Scholar

    [38]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [39]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [40]

    Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311Google Scholar

    [41]

    Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321Google Scholar

    [42]

    Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321Google Scholar

    [43]

    Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105Google Scholar

    [44]

    Sun T T, Li Z P, Ring P 2023 Phys. Lett. B 847 138320Google Scholar

    [45]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [46]

    Zhang Y, Qu X Y 2020 Phys. Rev. C 102 054312Google Scholar

    [47]

    Long W H, Giai N V, Meng J 2006 Phys. Lett. B 640 150Google Scholar

    [48]

    Geng J, Long W H 2022 Phys. Rev. C 105 034329Google Scholar

    [49]

    Long W H, Geng J, Liu J, Wang Z H 2022 Commun. Theor. Phys. 74 097301Google Scholar

    [50]

    Long W H, Ring P, Giai N V, Meng J 2010 Phys. Rev. C 81 024308Google Scholar

    [51]

    Jiang L J, Yang S, Sun B Y, Long W H, Gu H Q 2015 Phys. Rev. C 91 034326Google Scholar

    [52]

    Zong Y Y, Sun B Y 2018 Chin. Phys. C 42 024101Google Scholar

    [53]

    Wang Z H, Naito T, Liang H Z, Long W H 2021 Chin. Phys. C 45 064103Google Scholar

    [54]

    Long W H, Sagawa H, Meng J, Giai N V 2008 Europhys. Lett. 82 12001Google Scholar

    [55]

    Wang L J, Dong J M, Long W H 2013 Phys. Rev. C 87 047301Google Scholar

    [56]

    Liang H Z, Zhao P W, Meng J 2012 Phys. Rev. C 85 064302Google Scholar

    [57]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [58]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Meng J 2017 Phys. Rev. C 95 044301Google Scholar

    [59]

    Lu X L, Sun B Y, Long W H 2013 Phys. Rev. C 87 034311Google Scholar

    [60]

    Li J J, Long W H, Margueron J, Giai N V 2014 Phys. Lett. B 732 169Google Scholar

    [61]

    Li J J, Long W H, Song J L, Zhao Q 2016 Phys. Rev. C 93 054312Google Scholar

    [62]

    Long W H, Sun B Y, Hagino K, Sagawa H 2012 Phys. Rev. C 85 025806Google Scholar

    [63]

    Sun B Y, Long W H, Meng J, Lombardo U 2008 Phys. Rev. C 78 065805Google Scholar

    [64]

    Zhao Q, Sun B Y, Long W H 2015 J. Phys. G: Nucl. Part. Phys. 42 095101Google Scholar

    [65]

    Liu Z W, Qian Z, Xing R Y, Niu J R, Sun B Y 2018 Phys. Rev. C 97 025801Google Scholar

    [66]

    孙保元 2016 中国科学: 物理学 力学 天文学 46 012018Google Scholar

    Sun B Y 2016 SCIENTIA SINICA Physica, Mechanica& Astronomica 46 012018Google Scholar

    [67]

    Li A, Hu J N, Shang X L, Zuo W 2016 Phys. Rev. C 93 015803Google Scholar

    [68]

    Sun B Y, Meng J 2009 Chin. Phys. C 33 73Google Scholar

    [69]

    Long W H, Sagawa H, Meng J, Giai N V 2006 Phys. Lett. B 639 242Google Scholar

    [70]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1Google Scholar

    [71]

    Geng J, Li J J, Long W H, Niu Y F, Chang S Y 2019 Phys. Rev. C 100 051301(RGoogle Scholar

    [72]

    Ding S Y, Qian Z, Sun B Y, Long W H 2022 Phys. Rev. C 106 054311Google Scholar

    [73]

    Liu J, Niu Y F, Long W H 2020 Phys. Lett. B 806 135524Google Scholar

    [74]

    Yang S, Sun X D, Geng J, Sun B Y, Long W H 2021 Phys. Rev. C 103 014304Google Scholar

    [75]

    Yang S, Zhang B N, Sun B Y 2019 Phys. Rev. C 100 054314Google Scholar

    [76]

    Bouyssy A, Mathiot J F, Giai N V, Marcos S 1987 Phys. Rev. C 36 380Google Scholar

    [77]

    Long W H, Sagawa H, Giai N V, Meng J 2007 Phys. Rev. C 76 034314Google Scholar

    [78]

    Wei B, Zhao Q, Wang Z H, Geng J, Sun B Y, Niu Y F, Long W H 2020 Chin. Phys. C 44 074107Google Scholar

    [79]

    Long W H, Meng J, Giai N V, Zhou S G 2004 Phys. Rev. C 69 034319Google Scholar

    [80]

    Lalazissis G A, Niksic T, Vretenar D, Ring P 2005 Phys. Rev. C 71 024312Google Scholar

    [81]

    Lalazissis G A, Ring P 1997 Phys. Rev. C 55 540Google Scholar

  • 图 1  $ ^{120}$Sn中子共振态的能量随坐标空间截断$ R_\mathrm{max} $的变化. 对$ \nu {\mathrm{i}}_{13/2}, \nu {\mathrm{i}}_{11/2} $和$ \nu {\mathrm{j}}_{15/2} $态, 主量子数n从左到右由$ n=1 $开始依次增加. 图中实线表示RHF有效相互作用 PKO3, 虚线表示RMF有效相互作用PKDD

    Fig. 1.  Dependence of single-particle energies on the coordinate space cutoff $ R_\mathrm{max} $ for neutron resonance states of $ ^{120}$Sn. For $ \nu {\mathrm{i}}_{13/2},\; \nu {\mathrm{i}}_{11/2} $ and $ \nu {\mathrm{j}}_{15/2} $, the principal quantum numbers start from $ n=1 $ and increase from left to right. The solid lines in the figure is represented as the RHF effective interaction PKO3 and RMF’s PKDD with dashed lines are selected for comparison.

    图 2  不同主量子数n120Sn中子$ \nu {\mathrm{j}}_{15/2} $共振态的径向波函数, 有效相互作用选取为PKO3

    Fig. 2.  Radial wave functions of $ \nu {\mathrm{j}}_{15/2} $ neutron resonance state in 120Sn with different principal quantum numbers n, the effective interaction is selected as PKO3.

    图 3  不同CDF有效相互作用下, $ ^{120} $Sn中子$ \nu {\mathrm{f}}_{5/2}, \nu {\mathrm{i}}_{13/2}, $$ \nu {\mathrm{i}}_{11/2} $和$ \nu {\mathrm{j}}_{15/2} $共振态的共振能量和宽度. 图中黑色、蓝色和绿色标记分别表示RHF, DDRMF和NLRMF有效相互作用的结果

    Fig. 3.  Single-particle energies and widths of neutron $ \nu {\mathrm{f}}_{5/2}, \nu {\mathrm{i}}_{13/2}, \nu {\mathrm{i}}_{11/2} $ and $ \nu {\mathrm{j}}_{15/2} $ resonances in $ ^{120}\mathrm{Sn} $ with different CDF effective interactions. The black, blue and olive marks in the figure indicate the results with the effective interactions of RHF, DDRMF and NLRMF, respectively

    图 4  (a)不同CDF有效相互作用下$ ^{120} $Sn中子$ \nu {\mathrm{j}}_{15/2} $共振态的径向大分量波函数; (b)对中子$ \nu {\mathrm{j}}_{15/2} $共振态, PKO3与PKDD有效相互作用下类薛定谔方程中单粒子有效势和单粒子能级, 其中实线是总的势场, 虚线为直接项贡献, 阴影区域为交换项产生的影响

    Fig. 4.  (a) Radial wave functions of large component of $ ^{120} $Sn neutron $ \nu {\mathrm{j}}_{15/2} $ resonance state with different CDF effective interactions; (b) for neutron $ \nu {\mathrm{j}}_{15/2} $ resonance state, effective potentials in Schrödinger-like equation and corresponding single-particle energies with PKO3 and PKDD effective interactions. Solid lines are the total potentials, dotted line is the contribution from the direct terms and shaded area comes from the exchange terms of RHF model.

    图 5  120Sn核中共振态$ (\nu {\mathrm{i}}_{13/2}, \nu {\mathrm{i}}_{11/2}) $和束缚态$ (\nu 1 {\mathrm{g}}_{9/2}, $$ \nu 1 {\mathrm{g}}_{7/2}) $自旋伙伴态对应的径向大分量波函数, 选取RHF有效相互作用PKO3计算得到

    Fig. 5.  Radial wave functions of large component of resonance states $ (\nu {\mathrm{i}}_{13/2}, \nu {\mathrm{i}}_{11/2}) $ and bound states $ (\nu 1 {\mathrm{g}}_{9/2}, $$ \nu 1 {\mathrm{g}}_{7/2}) $, given by the RHF effective interaction PKO3.

    表 1  根据$^{120}$Sn 中子$\nu {\mathrm{j}}_{15/2}$共振态在不同主量子数n下的$E {\text{-}} R_\mathrm{max}$曲线得到对应的拐点大小$\bar{R}_\mathrm{max}$, 共振能量$E_{\gamma}$以及宽度 Γ. 以RHF有效相互作用PKO3结果为例

    Table 1.  Resonant energies $E_{\gamma}$, widths Γ and inflection points $\bar{R}_\mathrm{max}$ derived from $E {\text{-}} R_\mathrm{max}$ curves with different principal quantum numbers n for the neutron resonance state $\nu {\mathrm{j}}_{15/2}$ of $^{120}$Sn, illustrated by the RHF effective interaction PKO3.

    n $\bar{R}_\mathrm{max}$/fm $E_{\gamma}$/MeV Γ/MeV
    1 12.000 12.457 0.518
    2 17.731 12.377 0.653
    3 22.396 12.368 0.703
    4 26.825 12.365 0.738
    5 31.145 12.360 0.755
    6 35.393 12.358 0.767
    下载: 导出CSV

    表 2  采取不同的CDF有效相互作用给出的120Sn中子共振态的能量和宽度, 表中“\”表示无法提取相关信息. 所有单位均为MeV

    Table 2.  Single-particle energies and widths of neutron resonances in 120Sn with different CDF effective interactions, “\” in table means that the relevant information could not be calculated. All units are in MeV

    $\nu 3 {\mathrm{p}}_{1/2}$ $\nu 1 {\mathrm{h}}_{9/2}$ $\nu {\mathrm{f}}_{5/2}$ $\nu {\mathrm{i}}_{13/2}$ $\nu {\mathrm{i}}_{11/2}$ $\nu {\mathrm{j}}_{15/2}$
    $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ
    PKO1 –0.071 \ 0.262 $\sim$0.000 0.675 0.028 2.802 0.001 9.763 1.152 11.963 0.705
    PKO2 –0.096 \ 0.491 $\sim$0.000 1.150 0.127 2.516 0.001 10.171 1.161 11.882 0.586
    PKO3 0.028 0.013 0.312 $\sim$0.000 0.834 0.049 3.084 0.002 9.963 1.206 12.358 0.767
    DD-LZ1 –0.326 \ 1.437 $6\times 10^{-4}$ 0.268 0.001 4.221 0.016 10.370 1.895 13.277 1.387
    PKDD \ \ 1.054 $1\times 10^{-4}$ 1.173 0.153 3.874 0.009 10.737 1.953 13.313 1.279
    DD-ME2 –0.057 \ 0.949 $6\times 10^{-5}$ 0.787 0.047 4.038 0.012 10.541 1.874 13.329 1.366
    NL3 –0.015 \ \ \ 0.673 0.029 3.263 0.004 9.559 1.205 12.561 0.973
    PK1 0.046 0.034 0.250 $\sim$0.000 0.870 0.063 3.468 0.005 9.808 1.274 12.875 1.036
    PK1(RMF-GF) 0.050 0.033 0.251 $8\times 10^{-8}$ 0.871 0.065 3.469 0.005 9.854 1.283 12.893 1.065
    下载: 导出CSV

    表 3  120Sn核中$\nu {\rm i}$共振态和$\nu 1 {\rm g}$束缚态的自旋-轨道劈裂$\Delta \varepsilon$, 以及利用类薛定谔方程(9)得到各部分的贡献. 所有单位均为 MeV

    Table 3.  Spin-orbit splitting of resonance states $\nu {\rm i}$ and bound spin partners $\nu 1 {\rm g}$ in 120Sn, as well as their contributions from various components according to the Schrodinger-like Eq. (9). All units are in MeV

    PKO3 PKDD
    $l=4$ $l=6$ $l=4$ $l=6$
    $G''$ –0.856 –1.093 –0.994 –0.434
    $\varSigma_+$ 0.297 23.228 0.319 22.183
    $V_{{\mathrm{CB}}}$ 0.473 –16.907 0.452 –20.589
    $V^{\mathrm{D}}$ 4.362 4.086 7.069 5.703
    $V^{\mathrm{E}}$ 1.800 –2.436 0.000 0.000
    $\Delta \varepsilon$ 6.074 6.878 6.846 6.863
    下载: 导出CSV
  • [1]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460Google Scholar

    [2]

    Dobaczewski J, Nazarewicz W, Werner T R, Berger J F, Chinn C R, Dechargé J 1996 Phys. Rev. C 53 2809Google Scholar

    [3]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [4]

    Pöschl W, Vretenar D, Lalazissis G A, Ring P 1997 Phys. Rev. Lett. 79 3841Google Scholar

    [5]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470Google Scholar

    [6]

    Liu W, Lou J L, Ye Y L, Pang D Y 2020 Nucl. Sci. Tech. 31 20Google Scholar

    [7]

    Li W J, Ma Y G, Zhang G Q, et al 2019 Nucl. Sci. Tech. 30 180Google Scholar

    [8]

    Khumalo T C, Pellegri L, Wiedeking M, et al. 2023 J. Phys.: Conf. Ser. 2586 012065Google Scholar

    [9]

    Curutchet P, Vertse T, Liotta R J 1989 Phys. Rev. C 39 1020Google Scholar

    [10]

    Cao L G, Ma Z Y 2002 Phys. Rev. C 66 024311Google Scholar

    [11]

    苟秉聪 1993 物理学报 42 223Google Scholar

    Gou B C 1993 Acta Phys. Sin. 42 223Google Scholar

    [12]

    孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪 2019 物理学报 68 163101Google Scholar

    Sun Y, Hu F, Sang C C, Mei M F, Liu D D, Gou B C 2019 Acta Phys. Sin. 68 163101Google Scholar

    [13]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [14]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Rev. Lett. 59 763Google Scholar

    [15]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [16]

    Taylor J R 1972 Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (New York: John Wiley & Son) p240

    [17]

    Kukulin V I, Krasnopl’sky V M, Horácek J 1989 Theory of Resonances: Principles and Applications (Dordrecht: Kluwer Academic) p219

    [18]

    Yang S C, Meng J, Zhou S G 2001 Chin. Phys. Lett. 18 196Google Scholar

    [19]

    Tanaka N, Suzuki Y, Varga K, Lovas R G 1999 Phys. Rev. C 59 1391Google Scholar

    [20]

    Cattapan G, Maglione E 2000 Phys. Rev. C 61 067301Google Scholar

    [21]

    Gyarmati B, Kruppa A T 1986 Phys. Rev. C 34 95Google Scholar

    [22]

    Kruppa A T, Heenen P H, Flocard H, Liotta R J 1997 Chin. Phys. Lett. 79 2217Google Scholar

    [23]

    Arai K 2006 Phys. Rev. C 74 064311Google Scholar

    [24]

    Guo J Y, Yu M, Wang J, Yao B M, Jiao P 2010 Comput. Phys. Commun. 181 550Google Scholar

    [25]

    Maier C H, Cederbaum L S, Domcke W 1980 J. Phys. B 13 L119Google Scholar

    [26]

    Taylor H S, Hazi A U 1970 Phys. Rev. A 1 1109Google Scholar

    [27]

    Mandelshtam V A, Ravuri T R, Taylor H S 1993 Phys. Rev. Lett. 70 1932Google Scholar

    [28]

    Mandelshtam V A, Taylor H S, Ryaboy V, Moiseyev N 1994 Phys. Rev. A 50 2764Google Scholar

    [29]

    Serot B D, Walecka J D 1986 Adv. Nucl. Phys. 16 1

    [30]

    Reinhard P G 1989 Rep. Prog. Phys. 52 439Google Scholar

    [31]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193Google Scholar

    [32]

    Vretenar D, Afanasjev A, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [33]

    Zhang S S, Meng J, Zhou S G, Hillhouse G C 2004 Phys. Rev. C 70 034308Google Scholar

    [34]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [35]

    刘野, 陈寿万, 郭建友 2012 物理学报 61 112101Google Scholar

    Liu Y, Chen S W, Guo J Y 2012 Acta Phys. Sin. 61 112101Google Scholar

    [36]

    Zhang L, Zhou S G, Meng J, Zhao E G 2008 Phys. Rev. C 77 014312Google Scholar

    [37]

    张力, 周善贵, 孟杰, 赵恩广 2007 物理学报 56 3839Google Scholar

    Zhang L, Zhou S G, Meng J, Zhao E G 2007 Acta Phys. Sin. 56 3839Google Scholar

    [38]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [39]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [40]

    Li Z P, Meng J, Zhang Y, Zhou S G, Savushkin L N 2010 Phys. Rev. C 81 034311Google Scholar

    [41]

    Sun T T, Zhang S Q, Zhang Y, Hu J N, Meng J 2014 Phys. Rev. C 90 054321Google Scholar

    [42]

    Sun T T, Qian L, Chen C, Ring P, Li Z P 2020 Phys. Rev. C 101 014321Google Scholar

    [43]

    Chen C, Li Z P, Li Y X, Sun T T 2020 Chin. Phys. C 44 084105Google Scholar

    [44]

    Sun T T, Li Z P, Ring P 2023 Phys. Lett. B 847 138320Google Scholar

    [45]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [46]

    Zhang Y, Qu X Y 2020 Phys. Rev. C 102 054312Google Scholar

    [47]

    Long W H, Giai N V, Meng J 2006 Phys. Lett. B 640 150Google Scholar

    [48]

    Geng J, Long W H 2022 Phys. Rev. C 105 034329Google Scholar

    [49]

    Long W H, Geng J, Liu J, Wang Z H 2022 Commun. Theor. Phys. 74 097301Google Scholar

    [50]

    Long W H, Ring P, Giai N V, Meng J 2010 Phys. Rev. C 81 024308Google Scholar

    [51]

    Jiang L J, Yang S, Sun B Y, Long W H, Gu H Q 2015 Phys. Rev. C 91 034326Google Scholar

    [52]

    Zong Y Y, Sun B Y 2018 Chin. Phys. C 42 024101Google Scholar

    [53]

    Wang Z H, Naito T, Liang H Z, Long W H 2021 Chin. Phys. C 45 064103Google Scholar

    [54]

    Long W H, Sagawa H, Meng J, Giai N V 2008 Europhys. Lett. 82 12001Google Scholar

    [55]

    Wang L J, Dong J M, Long W H 2013 Phys. Rev. C 87 047301Google Scholar

    [56]

    Liang H Z, Zhao P W, Meng J 2012 Phys. Rev. C 85 064302Google Scholar

    [57]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [58]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Meng J 2017 Phys. Rev. C 95 044301Google Scholar

    [59]

    Lu X L, Sun B Y, Long W H 2013 Phys. Rev. C 87 034311Google Scholar

    [60]

    Li J J, Long W H, Margueron J, Giai N V 2014 Phys. Lett. B 732 169Google Scholar

    [61]

    Li J J, Long W H, Song J L, Zhao Q 2016 Phys. Rev. C 93 054312Google Scholar

    [62]

    Long W H, Sun B Y, Hagino K, Sagawa H 2012 Phys. Rev. C 85 025806Google Scholar

    [63]

    Sun B Y, Long W H, Meng J, Lombardo U 2008 Phys. Rev. C 78 065805Google Scholar

    [64]

    Zhao Q, Sun B Y, Long W H 2015 J. Phys. G: Nucl. Part. Phys. 42 095101Google Scholar

    [65]

    Liu Z W, Qian Z, Xing R Y, Niu J R, Sun B Y 2018 Phys. Rev. C 97 025801Google Scholar

    [66]

    孙保元 2016 中国科学: 物理学 力学 天文学 46 012018Google Scholar

    Sun B Y 2016 SCIENTIA SINICA Physica, Mechanica& Astronomica 46 012018Google Scholar

    [67]

    Li A, Hu J N, Shang X L, Zuo W 2016 Phys. Rev. C 93 015803Google Scholar

    [68]

    Sun B Y, Meng J 2009 Chin. Phys. C 33 73Google Scholar

    [69]

    Long W H, Sagawa H, Meng J, Giai N V 2006 Phys. Lett. B 639 242Google Scholar

    [70]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1Google Scholar

    [71]

    Geng J, Li J J, Long W H, Niu Y F, Chang S Y 2019 Phys. Rev. C 100 051301(RGoogle Scholar

    [72]

    Ding S Y, Qian Z, Sun B Y, Long W H 2022 Phys. Rev. C 106 054311Google Scholar

    [73]

    Liu J, Niu Y F, Long W H 2020 Phys. Lett. B 806 135524Google Scholar

    [74]

    Yang S, Sun X D, Geng J, Sun B Y, Long W H 2021 Phys. Rev. C 103 014304Google Scholar

    [75]

    Yang S, Zhang B N, Sun B Y 2019 Phys. Rev. C 100 054314Google Scholar

    [76]

    Bouyssy A, Mathiot J F, Giai N V, Marcos S 1987 Phys. Rev. C 36 380Google Scholar

    [77]

    Long W H, Sagawa H, Giai N V, Meng J 2007 Phys. Rev. C 76 034314Google Scholar

    [78]

    Wei B, Zhao Q, Wang Z H, Geng J, Sun B Y, Niu Y F, Long W H 2020 Chin. Phys. C 44 074107Google Scholar

    [79]

    Long W H, Meng J, Giai N V, Zhou S G 2004 Phys. Rev. C 69 034319Google Scholar

    [80]

    Lalazissis G A, Niksic T, Vretenar D, Ring P 2005 Phys. Rev. C 71 024312Google Scholar

    [81]

    Lalazissis G A, Ring P 1997 Phys. Rev. C 55 540Google Scholar

  • [1] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂. 物理学报, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [3] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论. 物理学报, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [4] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [5] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究. 物理学报, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [6] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [7] 刘野, 陈寿万, 郭建友. 复标度方法对原子核单粒子共振态的研究. 物理学报, 2012, 61(11): 112101. doi: 10.7498/aps.61.112101
    [8] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [9] 颉录有, 张志远, 董晨钟, 蒋 军. 高离化态类镍离子电子碰撞激发过程的相对论扭曲波理论研究. 物理学报, 2008, 57(10): 6249-6258. doi: 10.7498/aps.57.6249
    [10] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究. 物理学报, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [11] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [12] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [13] 傅景礼, 陈立群, 薛 纭. 转动相对论Birkhoff系统的平衡稳定性. 物理学报, 2003, 52(2): 256-261. doi: 10.7498/aps.52.256
    [14] 郭建友. tan~2(πηr)型势阱中相对论粒子的束缚态. 物理学报, 2002, 51(7): 1453-1457. doi: 10.7498/aps.51.1453
    [15] 傅景礼, 陈立群, 薛纭, 罗绍凯. 相对论Birkhoff系统的平衡稳定性. 物理学报, 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [16] 曹李刚, 刘玲, 陈宝秋, 马中玉. 稳定和不稳定核巨共振性质的相对论研究. 物理学报, 2001, 50(4): 638-643. doi: 10.7498/aps.50.638
    [17] 葛墨林, 段一士. π-π共振态. 物理学报, 1966, 22(6): 724-728. doi: 10.7498/aps.22.724
    [18] 葛墨林, 段一士. 关于π-π共振态. 物理学报, 1965, 21(11): 1903-1912. doi: 10.7498/aps.21.1903
    [19] 许伯威. 二粒子共振态的质量公式. 物理学报, 1965, 21(10): 1814-1816. doi: 10.7498/aps.21.1814
    [20] 许伯威. 介子共振态与么正对称理论. 物理学报, 1965, 21(3): 577-582. doi: 10.7498/aps.21.577
计量
  • 文章访问数:  817
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 修回日期:  2023-12-18
  • 上网日期:  2024-01-03
  • 刊出日期:  2024-03-20

/

返回文章
返回