搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海软X射线自由电子激光单脉冲成像定时的设计与实现

聂勇敢 高梓宸 佟亚军 范家东 刘功发 江怀东

引用本文:
Citation:

上海软X射线自由电子激光单脉冲成像定时的设计与实现

聂勇敢, 高梓宸, 佟亚军, 范家东, 刘功发, 江怀东

Design and implementation of timing system for single-shot imaging at Shanghai soft X-ray free-electron laser

Nie Yong-Gan, Gao Zi-Chen, Tong Ya-Jun, Fan Jia-Dong, Liu Gong-Fa, Jiang Huai-Dong
PDF
导出引用
  • 上海软X射线自由电子激光装置(SXFEL)是我国首台X射线自由电子激光用户装置,目前建有2条波荡器线、2条光束线以及5个实验站。装置可提供2nm至15nm波长(80 eV-620 eV)的X射线脉冲,用于高时空分辨的前沿科学研究。利用XFEL高亮度、短脉冲和全相干的特性实现单脉冲相干衍射成像,可以有效地减轻辐射损伤,提高图像的空间分辨率。SXFEL设计重复频率为50Hz,实现单脉冲成像的关键在于通过定时系统能够精确地控制X射线脉冲到达样品点的时间,以确保只有一个脉冲被选中用于成像。同时,还需要与成像系统的触发进行同步,以确保成像系统在正确的时间采集X射线脉冲与样品作用后的图像。本文介绍了SXFEL单脉冲成像定时的设计与实现。通过单脉冲成像的结果表明该定时方案能满足在50Hz的SXFEL开展单脉冲成像的需求。
    X-ray free-electron laser (XFEL) as the novel advanced x-ray light source, has excellent properties, such as ultra-high brightness, ultra-shot pulse duration and full coherence. The development of XFEL provides unprecedented opportunities for ultra-fast and ultra-fine science. The XFEL based experimental methods have been widely applied to the frontier research in physics, chemistry, biology etc. High resolution imaging as one of the most promising methods, can provide a direct view of the microworld. The coherent X-ray diffraction imaging (CDI) is a lensless imaging method. It has a lot of advantages at high resolution and quantitative imaging compared with the traditional lens based X-ray imaging methods. As one of the driving forces to constructing XFEL, it has become one of the most important imaging methods at XFEL facilities. By combing the excellent properties of XFEL and advantages of CDI, the single-shot imaging has been realized, based on the concept of “diffraction before destruction”. With the femtosecond XFEL pulse, structural information of the sample can be captured in a single-shot without multiple measurements or data accumulation. The single-shot imaging can effectively avoid radiation damage and improve the spatial resolution of the images. Shanghai soft X-ray free-electron laser facility (SXFEL) is the first XFEL facility operated at the X-ray wavelength in China. The SXFEL can generate ultra-intense coherent femtosecond X-ray pulses with wavelengths spanning 2-15 nm (80-620 eV). There are two undulator lines and two beamlines. Five endstations were designed and constructed for ultrafast chemistry and physics science, atomic and molecular science and biological imaging. The coherent scattering and imaging (CSI) endstation is the first commissioned endstation at SXFEL and focuses on the high spatiotemporal imaging for nano and micro materials with a single-shot imaging method. To realize the single-shot experiment at XFEL, especially for single-shot imaging, the timing system plays a crucial role to ensure the operation of the equipment in sequence. The timing system is responsible for generating precise and adjustable trigger signals that are used to trigger different devices. These signals can be adjusted according to the specific requirements of the devices being triggered, ensuring that the devices are triggered at the desired moments. In a single-shot experiment, only a single pulse should be transmitted to interact with the sample, and all others must be blocked before the previous single-shot experiment is finished. To carry out the single-shot imaging at CSI endstation, a timing system was designed and commissioned at SXFEL. As the maximum repetition rate of SXFEL is 50Hz, a fast X-ray shutter was applied to select only one XFEL pulse. This paper introduces the design and implement procession of timing for SXFEL single-shot imaging. The timing system implemented with White Rabbit(WR) and digital delay and pulse generator (BNC505). Single-shot imaging is realized by synchronizing the sample scanning stages movement and X-ray shutter to select a single pulse to illuminate the sample. At the same time, the X-ray detector was triggered with the timing system to record the single-shot diffraction pattern. During commissioning, the gold nanodisks with a side length of approximately 300 nm and a thickness of about 30nm were imaged at the CSI endstation as test sample. The nanodisks were uniformly dispersed on Si3N4 membranes for single-shot imaging. Because of the ultra-high peak intensity at the focus spot, the samples and membrane were ionized for each XFEL pulse shot. A raster scan was performed on the membranes with an interval of 50 μm to update the sample. With the timing system and X-ray shutter, single-shot diffraction patterns could be recorded using an X-ray detector. From the image of the Si3N4 membrane after raster scanning, the ionized holes with an interval of 50 μm can be recognized. Finally, phase retrieval was applied to the single-shot diffraction pattern to obtain a real-space image of the sample. The resolution of the reconstructed image was estimated by calculating the phase-retrieval transfer function (PRTF). With a citation of the PRTF curve dropping below 1⁄e, the spatial frequency cutoff was determined to be 22.6μm-1, corresponding to a half period resolution of 22.1 nm. The results show that the designed timing system can accurately control the time sequence of the imaging process, meeting the requirement for single-shot imaging within 50Hz at SXFEL.
  • [1]

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702(in Chinese)[范家东,江怀东2012物理学报61 218702]

    [2]

    Sakdinawat A, Attwood D 2010 Nat. Photonics 4 840

    [3]

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701(in Chinese)[周光照,佟亚军,陈灿,任玉琦,王玉丹,肖体乔2011物理学报60 028701]

    [4]

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701(in Chinese)[周光照,王玉丹,任玉琦,陈灿,叶琳琳,肖体乔2012物理学报61 018701]

    [5]

    Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F 2008 Science 321 379

    [6]

    Song C Y, Jiang H D, Mancuso A, Amirbekian B, Peng L, Sun R, Shah S S, Zhou Z H, Ishikawa T, Miao J W 2008 Phys. Rev. Lett. 101 158101

    [7]

    Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234

    [8]

    Chapman H N, Barty A, Bogan M J, Boutet S, Frank M, Hau-Riege S P, Marchesini S, Woods B W, Bajt S, Benner W H, London R A, Plönjes E, Kuhlmann M, Treusch R, Düsterer S, Tschentscher T, Schneider J R, Spiller E, Möller T, Bostedt C, Hoener M, Shapiro D A, Hodgson K O, van der Spoel D, Burmeister F, Bergh M, Caleman C, Huldt G, Seibert M M, Maia F R N C, Lee R W, Szöke A, Timneanu N, Hajdu J 2006 Nat. Phys. 2 839

    [9]

    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000 Nature 406 752

    [10]

    Ihm Y, Cho D H, Sung D, Nam D, Jung C, Sato T, Kim S, Park J, Kim S, Gallagher-Jones M, Kim Y, Xu R, Owada S, Shim J H, Tono K, Yabashi M, Ishikawa T, Miao J, Noh D Y, Song C 2019 Nat. Commun. 10 2411

    [11]

    Gaffney K J, Chapman H N 2007 Science 316 1444

    [12]

    Miao J, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530

    [13]

    Hidvegi A, Gessler P, Rehlich K, Bohm C 2011 IEEE Trans. Nucl. Sci. 58 1852

    [14]

    Ye Y, Li H, Li J, Yan Y, Yu P, Gong G 2022 J. Instrum. 17 T09009

    [15]

    Fan J D, Tong Y J, Nie Y G, Gao Z C, He B, Luan H, Lu D H, Zhang J H, Zhang D F, Yuan X Y, Chen J H, Guo Z, Liu T, Zhang M, Feng C, Deng H X, Liu B, Zhao Z T, Liu Z, Jiang H D 2022 Nucl. Sci. Tech. 33 114

    [16]

    MFR homepage, http://www.mrf.fi/.[2024-4-11]

    [17]

    Kim C, Baek S Y, Kang H-S, Kim J, Kim K-w, Ko I S, Mun G, Park B R 2015 Proceedings of the 15th International Conference on Accelerator and Large Experimental Physics Control Systems Melbourne, Australia, October 17-23, 2015 p79

    [18]

    Kalantari B, Biffiger R 2017 Proceedings of 16th International Conference on Accelerator and Large Experimental Physics Control Systems Barcelona, Spain, October 8-13, 2017 p232

    [19]

    Krejcik P, Akre R A, Allison S, Browne M, Dalesio L R, Dusatko J E, Frisch J C, Fuller R, Gromme A E, Kotturi K D, Norum S, Rogind D, White W E, Zelazny M 2007 Proceedings of the 8th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators Venice, Italy, May 20-23, 2007 p373

    [20]

    WR homepage, https://white-rabbit.web.cern.ch/[2024-4-11]

    [21]

    Yu P G,Yan Y B 2023 Nucl. Electron. Detect. Technol.43 923(in Chinese)[余鹏翔,阎映炳2023核电子学与探测技术43 923]

    [22]

    Yan Y B, Chen G H, Gong G H, Gu J L, Jiang Z Y, Xiao Q W, Ye Y M, Yu P X, Zhao L 2022 Proceedings of the 13th International Particle Accelerator Conference Bangkok, Thailand, June 12-17, 2022 p2415

    [23]

    Yu C L, Zhao H, Hu S M, Ding J G 2019 Nucl. Tech. 42 11(in Chinese)[于春蕾,赵欢,胡守明,丁建国2019核技术42 11]

    [24]

    Tong Y, Fan J, Nie Y, Guo Z, Gao Z, Yuan X, He B, Chen J, Zhang D, Luan H, Zhang J, Lu D, Xie M, Cheng P, Feng C, Liu T, Deng H, Liu B, Liu Z, Jiang H 2022 Front. Phys. 10

    [25]

    Park J, Eom I, Kang T-H, Rah S, Nam K H, Park J, Kim S, Kwon S, Park S H, Kim K S, Hyun H, Kim S N, Lee E H, Shin H, Kim S, Kim M-j, Shin H-J, Ahn D, Lim J, Yu C-J, Song C, Kim H, Noh D Y, Kang H S, Kim B, Kim K-W, Ko I S, Cho M-H, Kim S 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 810 74

    [26]

    Rodriguez J A, Xu R, Chen C-C, Zou Y, Miao J 2013 J. Appl. Cryst. 46 312

    [27]

    Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman A M, Sayre D 2005 Proc. Natl. Acad. Sci. 102 15343

    [28]

    Chapman H N, Barty A, Marchesini S, Noy A, Hau-Riege S P, Cui C, Howells M R, Rosen R, He H, Spence J C H, Weierstall U, Beetz T, Jacobsen C, Shapiro D 2006 J. Opt. Soc. Am. A 23 1179

  • [1] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, doi: 10.7498/aps.72.20221889
    [2] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, doi: 10.7498/aps.72.20230920
    [3] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报, doi: 10.7498/aps.72.20222424
    [4] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, doi: 10.7498/aps.71.20211978
    [5] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, doi: 10.7498/aps.71.20220976
    [6] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统. 物理学报, doi: 10.7498/aps.70.20200957
    [7] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, doi: 10.7498/aps.70.20211020
    [8] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, doi: 10.7498/aps.69.20191586
    [9] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, doi: 10.7498/aps.66.245201
    [10] 冯雷, 蒋刚. 氖原子对2000 eV X射线激光透明的产生机制. 物理学报, doi: 10.7498/aps.66.153201
    [11] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, doi: 10.7498/aps.65.219501
    [12] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, doi: 10.7498/aps.62.184204
    [13] 刘海岗, 许子健, 张祥志, 郭智, 邰仁忠. 中心挡板对扫描相干X射线衍射成像的影响. 物理学报, doi: 10.7498/aps.62.150702
    [14] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, doi: 10.7498/aps.61.018701
    [15] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, doi: 10.7498/aps.61.218702
    [16] 程冠晓, 胡超. X射线相衬成像光子筛. 物理学报, doi: 10.7498/aps.60.080703
    [17] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究. 物理学报, doi: 10.7498/aps.60.028701
    [18] 王琛, 郑无敌, 方智恒, 孙今人, 王伟, 熊俊, 傅思祖, 顾援, 王世绩, 乔秀梅, 张国平. X射线激光对激光烧蚀薄片靶的阴影成像研究. 物理学报, doi: 10.7498/aps.59.4767
    [19] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, doi: 10.7498/aps.54.2034
    [20] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, doi: 10.7498/aps.54.677
计量
  • 文章访问数:  178
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-06

/

返回文章
返回