搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度特征增强的合成孔径光学图像复原

张银胜 童俊毅 陈戈 单梦姣 王硕洋 单慧琳

引用本文:
Citation:

基于多尺度特征增强的合成孔径光学图像复原

张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳

Synthetic aperture optical image restoration based on multi-scale feature enhancement

Zhang Yin-Sheng, Tong Jun-Yi, Chen Ge, Shan Meng-Jiao, Wang Shuo-Yang, Shan Hui-Lin
PDF
HTML
导出引用
  • 受物理孔径大小和光线散射等影响, 合成孔径光学系统成像因通光面积不足和相位失真而出现降质模糊. 传统合成孔径光学系统成像复原算法对噪声敏感, 过于依赖退化模型, 自适应性差. 对此提出一种基于生成对抗网络的光学图像复原方法, 采用U-Net结构获取图像多级尺度特征, 利用基于自注意力的混合域注意力提高网络在空间、通道上的特征提取能力, 构造多尺度特征融合模块和特征增强模块, 融合不同尺度特征间的信息, 优化了编解码层的信息交互方式, 增强了整体网络对原始图像真实结构的关注力, 避免在复原过程中被振铃现象产生的伪影干扰. 实验结果表明, 与其他现有方法相比, 该方法在峰值信噪比、结构相似性和感知相似度评估指标上分别提高了1.51%, 4.42%和5.22%, 有效解决合成孔径光学系统成像结果模糊退化的问题.
    With the wide applications of high-resolution imaging technology in topographic mapping, astronomical observation, and military reconnaissance and other fields, the requirements for imaging resolution of optical system are becoming higher and higher . According to the diffraction limit and Rayleigh criterion, the imaging resolution of the optical system is proportional to the size of the aperture of the system, but affected by the material and the processing of the optical component: the single aperture of the optical system cannot be infinitely enlarged. Therefore the synthetic aperture technology is proposed to replace the single large aperture optical system. Owing to the effect of sub-aperture arrangement and light scattering, the imaging of synthetic aperture optical system will be degraded because of insufficient light area and phase distortion. The traditional imaging restoration algorithm of synthetic aperture optical system is sensitive to noise, overly relies on degraded model, requires a lot of manually designed models, and has poor adaptability. To solve this problem, a multi-scale feature enhancement method of restoring the synthetic aperture optical image is proposed in this work. U-Net is used to obtain multi-scale feature, and self-attention in mixed domain is used to improve the ability of of the network to extract the features in space and channel. Multi-scale feature fusion module and feature enhancement module are constructed to fuse the information between features on different scales. The information interaction mode of the codec layer is optimized, the attention of the whole network to the real structure of the original image is enhanced, and the artifact interference caused by ringing is avoided in the process of restoration. The final experimental results are 1.51%, 4.42% and 5.22% higher than those from the advanced deep learning algorithms in the evaluation indexes of peak signal-to-noise ratio, structural similarity and perceived similarity, respectively. In addition, the method presented in this work has a good restoration effect on the degraded images to different degrees of synthetic aperture, and can effectively restore the degraded images and the images with abnormal light, so as to solve the problem of imaging degradation of synthetic aperture optical system. The feasibility of deep learning method in synthetic aperture optical image restoration is proved.
      通信作者: 单慧琳, shanhuilin@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071240, 62106111)资助的课题.
      Corresponding author: Shan Hui-Lin, shanhuilin@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071240, 62106111).
    [1]

    Li J J, Zhou N, Sun J S, Zhou S, Bai Z D, Lu L P, Chen Q, Zuo C 2022 Light Sci. Appl. 11 154Google Scholar

    [2]

    李道京, 高敬涵, 崔岸婧, 周凯, 吴疆 2022 中国激光 49 0310001Google Scholar

    Li D J, Gao J H, Cui H J, Zhou K, Wu J 2022 Chin. J. Lasers 49 0310001Google Scholar

    [3]

    Shinwook K, Youngchun Y 2023 Opt. Express 31 4942Google Scholar

    [4]

    刘政, 王胜千, 饶长辉 2012 物理学报 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin 61 039501Google Scholar

    [5]

    Sun J, Cao W F, Xu Z B, Ponce J 2015 IEEE Conference on Computer Viion and Pattern Recognition Boston, MA, USA, June 7–12, 2015 p769

    [6]

    Tao X, Gao H Y, Shen X Y, Wang J, Jia J Y 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8174

    [7]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H, Shao L 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Nashville, TN, USA, June 20–25, 2021 p14816

    [8]

    Chong M, Wang Q, Zhang J 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p17378

    [9]

    Li, D S, Zhang Y, Cheung K, Wang X G, Qin H W, Li H S 2022 European Conference on Computer Vision ( ECCV) Tel Aviv, Israel October 23–27, 2022 p736

    [10]

    Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8183

    [11]

    Kupyn O, Martyniuk T, Wu J R, Wang Z Y 2019 IEEE/CVF International Conference on Computer Vision Seoul, Korea (South), Oct. 27–Nov. 2, 2019 p8877

    [12]

    江泽涛, 覃露露 2020 电子学报 48 258Google Scholar

    Jiang Z T, Qin L L 2020 J. Electron. 48 258Google Scholar

    [13]

    陈炳权, 朱熙, 汪政阳, 梁寅聪 2022 湖南大学学报(自然科学版) 49 124Google Scholar

    Chen B Q, Zhu X, Wang Z Y, Liang Y C 2022 J. Hunan Univ. (Nat. Sci. ) 49 124Google Scholar

    [14]

    王山豹, 梁栋, 沈玲 2023 计算机辅助设计与图形学学报 35 1109Google Scholar

    Wang S B, Liang D, Shen 2023 J. Comput. Aided Design Comput. Graphics 35 1109Google Scholar

    [15]

    刘杰, 祁箬, 韩轲 2023 光学精密工程 31 2080Google Scholar

    Liu J, Qi R, Han K 2023 Opt. Precis. Eng. 31 2080Google Scholar

    [16]

    Woo S H, Park J, Lee J Y, Kweon I S 2018 Proceedings of the European Conference on Computer Vision Munich, Germany, September 8–14, 2018 p3

    [17]

    王向军, 欧阳文森 2022 红外与激光工程 51 460Google Scholar

    Wang X J, Ouyang W S 2022 Infrared Laser Eng. 51 460Google Scholar

    [18]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p5718

    [19]

    Li Y W, Fan Y C, Xiang X Y, Demandolx D, Ranjan R, Timofte R, Gool L V 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vancouver, BC, Canada, June 17–24, 2023 p18278

    [20]

    Tsai F J, Peng Y T, Lin Y Y , Tsai C C, Lin C W 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p146

    [21]

    Chen L Y, Chu X J, Zhang X, Sun J 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p17

    [22]

    Tang J, Wang K Q, Ren Z R, Zhang W, Wu X Y, Di J L, Liu G D, Zhao J L 2020 Opt. Lasers Eng. 139 106463Google Scholar

    [23]

    Tang J, Wu J, Wang K Q, Ren Z B, Wu X Y, Hu L S, Di J L, Liu G D, Zhao J L 2021 Opt. Lasers Eng. 146 106707Google Scholar

  • 图 1  (a)合成孔径系统八孔径环形阵列结构示意图; (b)发生弥散后的光学系统PSF

    Fig. 1.  (a) Structure diagram of eight-aperture ring array of synthetic aperture system; (b) optical system PSF after dispersion.

    图 2  MFE-GAN总体框架图

    Fig. 2.  MFE-GAN General frame diagram.

    图 3  多尺度特征聚合模块

    Fig. 3.  Multi-scale feature aggregation module.

    图 4  特征加强模块FEM

    Fig. 4.  Feature enhancement module FEM.

    图 5  基于自注意力的混合域注意力MDBS

    Fig. 5.  Attention in mixed soft and hard domains MDBS.

    图 6  判别器结构图

    Fig. 6.  Discriminator structure diagram.

    图 7  (a)原始图像与(b)退化图像对比

    Fig. 7.  Comparison between original image (a) and degraded image(b).

    图 8  对比试验可视化结果 (a)原始清晰图像; (b) 退化图像; (c) 维纳滤波算法; (d) Deblur GAN算法; (e) SRN算法; (f) MPR-Net算法; (g) Stripformer算法; (h)本文算法

    Fig. 8.  Visualization results of comparison experiment: (a) Clear image; (b) degraded image; (c) Wiener filtering; (d) Deblur GAN; (e) SRN; (f) MPR-Net; (g) Stripformer; (h) our proposed method.

    图 9  不同振铃增益影响下的退化图像 (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10

    Fig. 9.  Degraded images under the influence of different ringing gains: (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10.

    图 10  不同振铃增益影响下本文方法对图像的复原结果 (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10

    Fig. 10.  Results of image restoration obtained by this method under the influence of different ringing gains: (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10.

    图 11  振铃增益n = 10时, 本文方法与其他方法对图像的复原结果对比 (a)受损图像; (b) Deblur GAN 算法; (c) SRN算法; (d) MPR-Net 算法; (e) Stripformer算法; (f)本文方法

    Fig. 11.  Comparison of image restoration results between the proposed method and other methods under the influence of ringing gain (n = 10): (a) Damaged image; (b) Deblur GAN; (c) SRN; (d) MPR-Net; (e) Stripformer; (f) our proposed method.

    图 12  对光线异常退化图像的修复结果 (a)光线异常图像; (b)退化后的光线异常图像; (c)本文复原后的生成图像

    Fig. 12.  Repair results of abnormal light degradation images: (a) Abnormal light image; (b) degraded images of light anomalies; (c) generated image after restoration of ours.

    表 1  实验环境

    Table 1.  Experimental environment.

    Hardware and software Configuration
    Operating system
    programming language
    Windows10
    Programming framework Pytorch2.0.0+ python3.9.16
    CPU 12th Gen Intel(R)
    Core(TM) i9-12900 KF
    GPU Nvidia GeForce RTX3090
    Memory 32G
    Video memory 24G
    下载: 导出CSV

    表 2  不同算法定量实验结果

    Table 2.  Quantitative experiment results of different algorithms.

    对比算法 PSNR/dB SSIM LPIPS FID
    Wiener filtering 15.227 0.5452 0.0896 3.9776
    Deblur GAN 22.379 0.7011 0.0383 1.2534
    SRN 17.639 0.6588 0.0697 2.1246
    MPR-Net 24.725 0.7364 0.0515 0.5728
    Stripformer 26.013 0.7556 0.0384 0.7138
    Ours 26.408 0.7890 0.0363 0.8979
    下载: 导出CSV

    表 3  在 $ n=10 $振铃增益影响下不同算法的定量实验结果

    Table 3.  Quantitative experimental results of different algorithms under the influence of ringing gain ( $ n=10 $).

    对比算法 PSNR/dB SSIM LPIPS
    Deblur GAN 16.867 0.6278 0.1006
    SRN 19.369 0.7454 0.0545
    MPR-Net 20.166 0.7624 0.0437
    Stripformer 22.023 0.7472 0.0483
    Ours 22.162 0.7702 0.0426
    下载: 导出CSV

    表 4  消融实验数据对比

    Table 4.  Comparison of G1 ablation data of coarse repair network.

    消融策略 U-Net 多尺度特征聚合模块 特征增强模块 混合域注意力 多尺度判别器 PSNR/dB SSIM LPIPS FID
    策略1 19.306 0.5865 0.0841 1.2976
    策略2 21.904 0.6714 0.0833 1.0742
    策略3 23.872 0.6927 0.0579 0.9103
    策略4 25.425 0.7563 0.0515 0.9157
    策略5 23.261 0.7401 0.0604 0.9247
    策略6 22.558 0.7342 0.0739 0.9508
    策略7 23.074 0.7095 0.0637 0.9460
    策略8 20.839 0.6584 0.0799 0.9882
    策略9 22.944 0.6627 0.0682 0.9763
    本文策略 26.408 0.7890 0.0363 0.8979
    下载: 导出CSV
  • [1]

    Li J J, Zhou N, Sun J S, Zhou S, Bai Z D, Lu L P, Chen Q, Zuo C 2022 Light Sci. Appl. 11 154Google Scholar

    [2]

    李道京, 高敬涵, 崔岸婧, 周凯, 吴疆 2022 中国激光 49 0310001Google Scholar

    Li D J, Gao J H, Cui H J, Zhou K, Wu J 2022 Chin. J. Lasers 49 0310001Google Scholar

    [3]

    Shinwook K, Youngchun Y 2023 Opt. Express 31 4942Google Scholar

    [4]

    刘政, 王胜千, 饶长辉 2012 物理学报 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin 61 039501Google Scholar

    [5]

    Sun J, Cao W F, Xu Z B, Ponce J 2015 IEEE Conference on Computer Viion and Pattern Recognition Boston, MA, USA, June 7–12, 2015 p769

    [6]

    Tao X, Gao H Y, Shen X Y, Wang J, Jia J Y 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8174

    [7]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H, Shao L 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Nashville, TN, USA, June 20–25, 2021 p14816

    [8]

    Chong M, Wang Q, Zhang J 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p17378

    [9]

    Li, D S, Zhang Y, Cheung K, Wang X G, Qin H W, Li H S 2022 European Conference on Computer Vision ( ECCV) Tel Aviv, Israel October 23–27, 2022 p736

    [10]

    Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8183

    [11]

    Kupyn O, Martyniuk T, Wu J R, Wang Z Y 2019 IEEE/CVF International Conference on Computer Vision Seoul, Korea (South), Oct. 27–Nov. 2, 2019 p8877

    [12]

    江泽涛, 覃露露 2020 电子学报 48 258Google Scholar

    Jiang Z T, Qin L L 2020 J. Electron. 48 258Google Scholar

    [13]

    陈炳权, 朱熙, 汪政阳, 梁寅聪 2022 湖南大学学报(自然科学版) 49 124Google Scholar

    Chen B Q, Zhu X, Wang Z Y, Liang Y C 2022 J. Hunan Univ. (Nat. Sci. ) 49 124Google Scholar

    [14]

    王山豹, 梁栋, 沈玲 2023 计算机辅助设计与图形学学报 35 1109Google Scholar

    Wang S B, Liang D, Shen 2023 J. Comput. Aided Design Comput. Graphics 35 1109Google Scholar

    [15]

    刘杰, 祁箬, 韩轲 2023 光学精密工程 31 2080Google Scholar

    Liu J, Qi R, Han K 2023 Opt. Precis. Eng. 31 2080Google Scholar

    [16]

    Woo S H, Park J, Lee J Y, Kweon I S 2018 Proceedings of the European Conference on Computer Vision Munich, Germany, September 8–14, 2018 p3

    [17]

    王向军, 欧阳文森 2022 红外与激光工程 51 460Google Scholar

    Wang X J, Ouyang W S 2022 Infrared Laser Eng. 51 460Google Scholar

    [18]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p5718

    [19]

    Li Y W, Fan Y C, Xiang X Y, Demandolx D, Ranjan R, Timofte R, Gool L V 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vancouver, BC, Canada, June 17–24, 2023 p18278

    [20]

    Tsai F J, Peng Y T, Lin Y Y , Tsai C C, Lin C W 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p146

    [21]

    Chen L Y, Chu X J, Zhang X, Sun J 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p17

    [22]

    Tang J, Wang K Q, Ren Z R, Zhang W, Wu X Y, Di J L, Liu G D, Zhao J L 2020 Opt. Lasers Eng. 139 106463Google Scholar

    [23]

    Tang J, Wu J, Wang K Q, Ren Z B, Wu X Y, Hu L S, Di J L, Liu G D, Zhao J L 2021 Opt. Lasers Eng. 146 106707Google Scholar

  • [1] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究. 物理学报, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [2] 白立春, 孙劲光, 高艳东. 气泡在超声场中绕圈运动的高速摄影及其图像分析. 物理学报, 2021, 70(5): 054701. doi: 10.7498/aps.70.20201381
    [3] 兰斌, 冯国英, 张涛, 梁井川, 周寿桓. 用于透明平板平行度和均匀性测量的单元件干涉仪. 物理学报, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [4] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究. 物理学报, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [5] 郭宇琦, 潘俊星, 张进军, 孙敏娜, 王宝凤, 武海顺. 在光敏性三元聚合物混合物中构造 多尺度有序图案. 物理学报, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [6] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [7] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [8] 侯凤贞, 黄晓林, 庄建军, 霍铖宇, 宁新宝. 多尺度策略和替代数据检验——HRV时间不可逆性分析的两个要素. 物理学报, 2012, 61(22): 220507. doi: 10.7498/aps.61.220507
    [9] 姜祝辉, 黄思训, 石汉青, 张伟, 王彪. 合成孔径雷达图像反演海面风向新方法的研究. 物理学报, 2011, 60(10): 108402. doi: 10.7498/aps.60.108402
    [10] 陆怀宝, 黎军顽, 倪玉山, 梅继法, 王洪生. 体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析. 物理学报, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [11] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模. 物理学报, 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [12] 孙其诚, 张国华, 王博, 王光谦. 半柔性网络剪切模量的计算. 物理学报, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [13] 邢真慈, 徐伟, 戎海武, 王宝燕. 有界噪声激励下带有时滞反馈的随机Mathieu-Duffing系统的响应. 物理学报, 2009, 58(2): 824-829. doi: 10.7498/aps.58.824
    [14] 李芹, 蔡理, 冯朝文. SET-MOS混合结构的细胞神经网络及其应用. 物理学报, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [15] 龚志强, 周 磊, 支 蓉, 封国林. 1—30d尺度温度关联网动力学统计性质研究. 物理学报, 2008, 57(8): 5351-5360. doi: 10.7498/aps.57.5351
    [16] 杨小冬, 宁新宝, 何爱军, 都思丹. 基于多尺度的人体ECG信号质量指数谱分析. 物理学报, 2008, 57(3): 1514-1521. doi: 10.7498/aps.57.1514
    [17] 孙增国, 韩崇昭. 基于斑点噪声的拖尾Rayleigh分布的合成孔径雷达图像最大后验概率降噪. 物理学报, 2007, 56(8): 4565-4570. doi: 10.7498/aps.56.4565
    [18] 雷佑铭, 徐 伟. 有界噪声和谐和激励联合作用下一类非线性系统的混沌研究. 物理学报, 2007, 56(9): 5103-5110. doi: 10.7498/aps.56.5103
    [19] 马坚伟, 杨慧珠, 朱亚平. 多尺度有限差分法模拟复杂介质波传问题. 物理学报, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
    [20] 阳世新, 李方华, 刘玉东, 古元新, 范海福. 直接法应用于蛋白质二维晶体的电子晶体学图像处理. 物理学报, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
计量
  • 文章访问数:  2278
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-01-17
  • 刊出日期:  2024-03-20

/

返回文章
返回