搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡在超声场中绕圈运动的高速摄影及其图像分析

白立春 孙劲光 高艳东

引用本文:
Citation:

气泡在超声场中绕圈运动的高速摄影及其图像分析

白立春, 孙劲光, 高艳东

High-speed photography and image analysis of orbital motion of gas bubbles in ultrasonic field

Bai Li-Chun, Sun Jin-Guang, Gao Yan-Dong
PDF
HTML
导出引用
  • 借助高速摄影和图像分析技术对首次发现的附壁气泡的绕圈现象进行了实验研究, 重点研究游移气泡的运动轨迹、附壁气泡的布阵过程、气泡的来源以及气泡的振动细节. 研究发现游移绕圈气泡的运动轨迹呈现出不稳定、不规则、不光滑的特点. 阵列气泡源于游移气泡, 而游移气泡变成阵列气泡的方式主要是通过合并增大体积, 从而减小所受的Bjerknes力, 降低活性的方式实现的. 游移气泡源于ALF (acoustic lichtenberg figure)空化云中大量空泡的合并, 使以径向振动为主的空泡逐渐过渡到以表面波动为主的气泡. 阵列气泡在Bjerknes力的作用下呈现出规则的表面波动, 而体积更小受力更大的游移空泡的表面完全失稳, 呈现极不规则的形貌, 并对附近阵列气泡的表面波动产生影响. 阵列气泡呈现出十分规则的排布, 相邻阵列气泡之间的振动相位是相反的, 表现为相互排斥.
    Bubbles in the fluid have a great influence on the macroscopic physical properties and flow state of the fluid. The study of bubble motion in fluid is of great significance to ultrasonic cleaning, sonochemistry, flood discharge and energy dissipation, aeration and cavitation reduction. Bubbles in the fluid may also exhibit a special translational motion in an ultrasonic field—orbital motion. The orbital motions of gas bubbles attached to a boundary in ultrasonic field are investigated experimentally by high-speed photography and image analysis. The present study focuses on the trajectories of wandering bubbles, the arrangement of gas bubble array, the source of gas bubbles and the surface fluctuation details of gas bubbles. It is found that the circular trajectory of the wandering gas bubble is unstable, irregular and unsmooth. The holding gas bubbles in the bubble array originate from wandering bubbles. The transformation of wandering bubbles into array bubbles is mainly realized by merging and increasing the volume, thereby reducing the Bjerknes force. The wandering bubbles are produced by the merging of a large number of cavitation bubbles in the ALF (acoustic lichtenberg figure) structure, which makes the radial vibration bubbles gradually transform into the surface fluctuating bubbles. Under the action of Bjerknes force, the array bubbles show regular surface fluctuations, while the smaller ones are completely unstable, showing extremely irregular morphology, and have an influence on the surface fluctuation of nearby array bubbles. The array bubbles show a very regular arrangement, and the adjacent array bubbles have opposite vibration phases and repel each other. The orbital motion of gas bubbles attached to a boundary is significantly different from that of the bubbles suspended in liquid. First of all, the attached bubbles move along the solid wall, while the suspended bubbles move completely away from the vessel wall in the liquid. Secondly, the attached bubbles move around a regular array of bubbles, while the suspended bubbles move orbitally alone. In addition, the attached bubble is nearly hemispherical, and its surface fluctuates violently, and its motion track is extremely unsmooth, which is different from the circular motion of spherical suspended bubble. Finally, there is a strong interaction between the attached wandering bubble and the array bubble, which has a great influence on the vibration and trajectory of the attached bubble. In contrast, the circular motion of the suspended bubble does not have such a complex effect.
      通信作者: 孙劲光, sjg_lntu@163.com
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1403303)资助的课题
      Corresponding author: Sun Jin-Guang, sjg_lntu@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1403303)
    [1]

    Shew W L, Pinton J F 2006 Phys. Rev. Lett. 97 144508Google Scholar

    [2]

    Bai L X, Xu W L, Zhang Y C, Li Y F, Huang D F 2008 IEEE International Ultrasonics Symposium Proceedings Beijing, China, November 2–5, 2008 p942

    [3]

    Young F R 1989 Cavitation (London: McGraw-Hill Book Company) p18

    [4]

    Paul T, Richard M, Andrew O 2007 J. Fluid Mech. 576 191Google Scholar

    [5]

    郭策, 祝锡晶, 王建青, 叶林征 2016 物理学报 65 044304Google Scholar

    Guo C, Zhu X J, Wang J Q, Ye L Z 2016 Acta Phys. Sin. 65 044304Google Scholar

    [6]

    Tomita Y, Shima A 1986 J. Fluid Mech. 169 535Google Scholar

    [7]

    Versluis M, Goertz D E, Palanchon P, Heitman I L, Van Der Meer S M, Dollet B, Jong N D, Lohse. D 2010 Phys. Rev. E 82 026321Google Scholar

    [8]

    Kim T, Kim H 2014 J. Fluid Mech. 750 355Google Scholar

    [9]

    Leighton T G, Walton A J, Pickworth M J W 1990 Eur. J. Phys. 11 47Google Scholar

    [10]

    Parlitzs B U, Mettin R, Luther S, Akhativ I, Voss M, Lauterborn W 1999 Philos. Trans. R. Soc. London, Ser. A 357 313Google Scholar

    [11]

    Metti R 2005 Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications (Kerala: Research Signpost Publisher) pp1−36

    [12]

    Kodama T, Takayama K, Nagayasu N 1996 J. Appl. Phys 80 5587Google Scholar

    [13]

    Miller D L 1977 J. Acoust. Soc. Am. 62 12Google Scholar

    [14]

    Barbat T, Ashgritz N 2004 Appl. Math. Comput. 157 775

    [15]

    Rensen J, Bosman D, Magnaudet J, Ohl C D, Prosperetti A, Togel R, Versluis M, Lohse D 2001 Phys. Rev. Lett. 86 4819Google Scholar

    [16]

    Shirota M, Yamashita K, Inamura T 2012 American Institute of Physics Conference Proceedings New Mexico, April 30–May 3, 2012 p155

    [17]

    Desjouy C, Labelle P, Gilles B, Bera J C, Inserra C 2013 Phys. Rev. E 88 033006Google Scholar

    [18]

    Desjouy C, Labelle P, Gilles B, Bera JC, Inserra C 2013 J. Acoust. Soc. Am. 133 3277

    [19]

    Bai L X, Xu W L, Deng J J, Li C, Xu D L, Gao Y D 2014 Ultrason. Sonochem. 21 1696Google Scholar

    [20]

    Bai L X, Xu W L, Zhang F X, Li N W, Zhang Y C, Huang D F 2009 Sci China Ser. E 52 1974Google Scholar

  • 图 1  实验装置图

    Fig. 1.  Experimental setup.

    图 2  超声场中附壁气泡的绕圈运动 (a) 气泡绕圈运动的快照; (b) 图(a)中气泡运动轨迹束; (c) 图(a)中气泡单圈运动轨迹(影像叠加); (d) 气泡单圈运动轨迹(长时曝光)

    Fig. 2.  Orbital motion of a gas bubble attached to a boundary in ultrasonic field: (a) Snapshot of the orbital motion of a gas bubble; (b) trajectories of the gas bubble in Fig.2(a); (c) single loop trajectory of the gas bubble in Fig. 2(a) (image overlay); (d) single loop trajectory of the gas bubble in Fig. 2(a) (long exposure).

    图 3  超声场中附壁气泡的布阵过程

    Fig. 3.  The arrangement of gas bubbles attached to the boundary in ultrasonic field.

    图 4  超声场中附壁气泡的来源 (a) ALF超声空化云中空泡的运动和气泡的形成(曝光时间1/250 s); (b) ALF超声空化云中空泡和气泡的运动轨迹(曝光时间1/50 s)

    Fig. 4.  The source of gas bubbles attached to the wall in ultrasonic field: (a) The motion of cavitation bubbles and the formation of gas bubbles in ALF structure (the exposure time is 1/250 s); (b) trajectories of cavitation bubbles and gas bubbles in ALF structure (the exposure time is 1/50 s).

    图 5  绕圈气泡与附壁气泡的表面形态

    Fig. 5.  Surface morphology of wandering gas bubble and holding bubble.

    图 6  附壁气泡的表面波动 (a) 附壁气泡阵列中相邻气泡半个周期内表面波动的耦合(拍摄速度为100000 frame/s); (b) 反射光照射下附壁气泡的表面波动; (c) 相距极近的两个气泡的振动耦合

    Fig. 6.  Surface wave of gas bubble attached to the boundary: (a) Surface fluctuation of adjacent gas bubbles in a bubble array in half a period (Frame rate: 100000 frame/s); (b) surface fluctuation of a gas bubble attached to boundary under reflected light; (c) wave coupling of two gas bubbles quite close to each other.

  • [1]

    Shew W L, Pinton J F 2006 Phys. Rev. Lett. 97 144508Google Scholar

    [2]

    Bai L X, Xu W L, Zhang Y C, Li Y F, Huang D F 2008 IEEE International Ultrasonics Symposium Proceedings Beijing, China, November 2–5, 2008 p942

    [3]

    Young F R 1989 Cavitation (London: McGraw-Hill Book Company) p18

    [4]

    Paul T, Richard M, Andrew O 2007 J. Fluid Mech. 576 191Google Scholar

    [5]

    郭策, 祝锡晶, 王建青, 叶林征 2016 物理学报 65 044304Google Scholar

    Guo C, Zhu X J, Wang J Q, Ye L Z 2016 Acta Phys. Sin. 65 044304Google Scholar

    [6]

    Tomita Y, Shima A 1986 J. Fluid Mech. 169 535Google Scholar

    [7]

    Versluis M, Goertz D E, Palanchon P, Heitman I L, Van Der Meer S M, Dollet B, Jong N D, Lohse. D 2010 Phys. Rev. E 82 026321Google Scholar

    [8]

    Kim T, Kim H 2014 J. Fluid Mech. 750 355Google Scholar

    [9]

    Leighton T G, Walton A J, Pickworth M J W 1990 Eur. J. Phys. 11 47Google Scholar

    [10]

    Parlitzs B U, Mettin R, Luther S, Akhativ I, Voss M, Lauterborn W 1999 Philos. Trans. R. Soc. London, Ser. A 357 313Google Scholar

    [11]

    Metti R 2005 Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications (Kerala: Research Signpost Publisher) pp1−36

    [12]

    Kodama T, Takayama K, Nagayasu N 1996 J. Appl. Phys 80 5587Google Scholar

    [13]

    Miller D L 1977 J. Acoust. Soc. Am. 62 12Google Scholar

    [14]

    Barbat T, Ashgritz N 2004 Appl. Math. Comput. 157 775

    [15]

    Rensen J, Bosman D, Magnaudet J, Ohl C D, Prosperetti A, Togel R, Versluis M, Lohse D 2001 Phys. Rev. Lett. 86 4819Google Scholar

    [16]

    Shirota M, Yamashita K, Inamura T 2012 American Institute of Physics Conference Proceedings New Mexico, April 30–May 3, 2012 p155

    [17]

    Desjouy C, Labelle P, Gilles B, Bera J C, Inserra C 2013 Phys. Rev. E 88 033006Google Scholar

    [18]

    Desjouy C, Labelle P, Gilles B, Bera JC, Inserra C 2013 J. Acoust. Soc. Am. 133 3277

    [19]

    Bai L X, Xu W L, Deng J J, Li C, Xu D L, Gao Y D 2014 Ultrason. Sonochem. 21 1696Google Scholar

    [20]

    Bai L X, Xu W L, Zhang F X, Li N W, Zhang Y C, Huang D F 2009 Sci China Ser. E 52 1974Google Scholar

  • [1] 周少彤, 莫腾富, 任晓东, 徐强, 孙奇志, 张思群, 黄显宾, 张朝辉, 刘文燕. 水下电爆炸气泡脉动及能量特性实验研究. 物理学报, 2024, 73(24): 245204. doi: 10.7498/aps.73.20240720
    [2] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [3] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [4] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振. 物理学报, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [5] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
    [6] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [7] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [8] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [9] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究. 物理学报, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [10] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究. 物理学报, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [11] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [12] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [13] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [14] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟. 物理学报, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [15] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识. 物理学报, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [16] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [17] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [18] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [19] 高 波, 张寒虹, 张 弛. 水中高压放电气泡的实验研究. 物理学报, 2003, 52(7): 1714-1719. doi: 10.7498/aps.52.1714
    [20] 阳世新, 李方华, 刘玉东, 古元新, 范海福. 直接法应用于蛋白质二维晶体的电子晶体学图像处理. 物理学报, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
计量
  • 文章访问数:  5204
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-23
  • 修回日期:  2020-10-27
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回