搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下电爆炸气泡脉动及能量特性实验研究

周少彤 莫腾富 任晓东 徐强 孙奇志 张思群 黄显宾 张朝辉 刘文燕

引用本文:
Citation:

水下电爆炸气泡脉动及能量特性实验研究

周少彤, 莫腾富, 任晓东, 徐强, 孙奇志, 张思群, 黄显宾, 张朝辉, 刘文燕
cstr: 32037.14.aps.73.20240720

Experimental study on pulsation and energy characteristics of bubbles produced by underwater electrical explosion

Zhou Shao-Tong, Mo Teng-Fu, Ren Xiao-Dong, Xu Qiang, Sun Qi-Zhi, Zhang Si-Qun, Huang Xian-Bin, Zhang Zhao-Hui, Liu Wen-Yan
cstr: 32037.14.aps.73.20240720
PDF
HTML
导出引用
  • 水下爆炸气泡脉动产生的压力波及滞后流可以对舰船的整体结构产生破坏作用. 本文介绍了采用电爆炸丝的技术途径开展水下爆炸气泡的初步实验研究工作, 重点聚焦于气泡的宏观物理特征、运动规律、以及与传统化爆气泡的差异. 实验装置主要由2个并联的储能放电模块和爆炸水箱组成. 每个模块由2台20 μF的电容器以及位于电容器之间的气体放电开关串联构成. 负载采用了1根直径0.9 mm、长度50 mm的纯铜丝. 实验结果显示, 铜丝被电离后形成等离子体的最高能量密度与TNT相当; 等离子体在膨胀过程中汽化周围的水介质并逐渐演变为气泡; 气泡的总脉动次数不超过4次, 内部的主要成分应该为铜蒸气和水蒸气, 并在能量耗尽后直接溃灭于水中. 通过实验数据与现有理论运动模型的比较发现, 气泡在膨胀阶段汽化水介质导致一定的内能损耗, 使得其运动轨迹的模拟结果与实验数据具有一定差异.
    Low-frequency hysteresis flow and pulsating pressure caused by underwater explosion bubbles can cause overall damage to ships. The hydrodynamic and energy conversion of bubbles are very important in studying underwater explosion bubbles. At present the study of bubble dynamics is based on ideal gas hypothesis, which does not involve heat exchange and is only suitable for bubbles of chemical detonating, but not for bubbles at higher temperatures. The evolution of underwater explosion bubbles is studied experimentally by underwater exploding wire. There is obvious heat exchange during the evolution of bubbles, which is different from bubble behavior in chemical detonating underwater. This study focuses on pulsating behavior and energy characteristic of bubbles, and the difference from chemical detonating as well. The experimental facility is mainly composed of two parallel energy storage-discharge modules and a water tank. Each module is composed of two 20 μF capacitors connected and a gas switch connected in series with these two capacitors. A copper wire with a diameter of 0.9 mm and a length of 50 mm is used as a load. The experimental results show that the deposited energy density generated by electric explosion is almost equal to that of TNT. The wire plasma expansion produces an initial bubble with temperature of radially spatial distribution. The total pulsation frequency of bubble will not exceed 4 times. After energy exhaustion, bubbles collapse directly into water because the main component is condensable gas. The comparison of the experimental data with the existing theoretical models shows that the vaporization of water in bubble expansion stage leads to certain energy loss, which makes difference in motion trajectory of bubbles between the simulation and the experiment. This study provides ideas and data support for the dynamical study of high temperature bubbles in underwater explosion.
      通信作者: 刘文燕, s108liuwy@163.com
    • 基金项目: 国家自然科学基金(批准号: 12305263, 12075225)资助的课题.
      Corresponding author: Liu Wen-Yan, s108liuwy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305263, 12075225).
    [1]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [2]

    Cole R H 1948 Underwater Explosion (Princeton: Princeton University Press

    [3]

    Plesset M 1949 J. Appl. Mech. 16 277Google Scholar

    [4]

    Gilmore F 1952 The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid (Pasadena: Hydrodynamics Laboratory California Institute of Technology) Tech. Report No. 26-4

    [5]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [6]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457Google Scholar

    [7]

    Lezzi A, Prosperetti A 1987 J. Fluid Mech. 185 289Google Scholar

    [8]

    Best J 1991 Ph. D. Dissertation (Wollongong: University of Wollongong

    [9]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584Google Scholar

    [10]

    姚熊亮, 汪玉, 张阿漫 2012 水下爆炸气泡动力学 (哈尔滨: 哈尔滨工程大学出版社)

    Yao X L, Wang Y, Zhang A M 2012 Bubble Dynamics of Underwater Explosion (Harbin: Harbin Engineering University Press

    [11]

    张阿漫, 姚熊亮 2008 物理学报 57 339Google Scholar

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339Google Scholar

    [12]

    张阿漫, 姚熊亮, 李佳 2008 物理学报 57 1672Google Scholar

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672Google Scholar

    [13]

    张阿漫, 王超, 王诗平, 程晓达 2012 物理学报 61 084701Google Scholar

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701Google Scholar

    [14]

    叶曦, 姚熊亮, 张阿漫, 庞福振 2013 物理学报 62 114702Google Scholar

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702Google Scholar

    [15]

    李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701Google Scholar

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar

    [16]

    Zhang A M, Li S M, Cui P 2023 Phys. Fluids 35 033323Google Scholar

    [17]

    张阿漫, 明付仁, 刘云龙, 李帅, 王诗平 2023 中国舰船研究 18 139

    Zhang A M, Ming F R, Liu Y L, Li S, Wang S P 2023 Chin. J. Ship Res. 18 139

    [18]

    段超伟, 宋浦, 胡宏伟, 杨青, 冯海云 2022 爆破 39 140Google Scholar

    Duan W C, Song P, Hu H W, Yang Q, Feng H Y 2022 Blasting 39 140Google Scholar

    [19]

    Thomsen J M, Ruhl S F 1980 Mitigation of Explosion Bubble Pulsation Caused by the Deep Underwater Detonation of a Tapered Charge (Washington, D. C.: Director Defense Nuclear Agency) Phys. Int. Co. AD-A107804

    [20]

    Kriebel A R, Bechtel J S 1970 Hydro dynamic Data From Exploding Wires (Washington, D.C.: Office of Naval Research Department of the Navy) URS Res. Co. AD-706074

    [21]

    Buntzen R R 1962 The Use of Exploding Wires in the Study of Small-Scale Underwater Explosions (New York: Plenum Press) USRDL Tech. Report No. 195

    [22]

    Hege J S 1963 Hydra Program Determination of the Total Thermal Radiant Energy Emitted by an Underwater Exploding Wire (San Francisco: U.S. Naval Radiological Defense Laboratory) Def. Doc. Center AD-401342

    [23]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 Plasma Sci. Tech. 11 661Google Scholar

    [24]

    韩若愚, 吴佳玮, 周海滨, 邱爱慈 2017 电工技术学报 32 257

    Han R Y, Wu J W, Zhou H B, Qiu A C 2017 Trans. Chin. Eeletrotech. Soc. 32 257

    [25]

    吴坚, 阴国锋, 范云飞, 李兴文, 邱爱慈 2018 高电压技术 44 4003

    Wu J, Yin G F, Fan Y F, Li X W, Qiu A C 2018 High Voltage Eng. 44 4003

    [26]

    钱盾, 刘志刚, 邹晓兵, 王新新 2021 高电压技术 47 815

    Qian D, Liu Z G, Zou X B, Wang X X 2021 High Voltage Eng. 47 815

    [27]

    Antonov O, Gilburd L, Efimov S, Bazalitski G, Gurovich V T, Krasik Y E 2012 Phys. Plasmas 19 102702Google Scholar

    [28]

    Lauterborn W, Bolle H 1975 J. Fluid Mech. 72 391Google Scholar

    [29]

    宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 0641Google Scholar

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 0641Google Scholar

    [30]

    Jia Z W, Li D, Tian Y, Pan H P, Zhong Q, Yao Z F, Lu Y, Guo J J, Zheng R E 2023 Spectrochim. Acta, Part B 206 106713Google Scholar

    [31]

    梁川, 章林文, 李欣 2004 强激光与粒子束 16 787

    Liang C, Zhang L W, Li X 2004 High Power Laser Part. Beams 16 787

    [32]

    Oreshkin V I, Chaikovsky S A, Ratakhin N A, Grinenko A, Krasik Y E 2007 Phys. Plasmas 14 102703Google Scholar

    [33]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B. Fluids 42 69Google Scholar

    [34]

    Kolacek K, Prukner V, Schmidt J, Frolovo O, Straus J 2010 Laser Part. Beams 28 61Google Scholar

    [35]

    Wang Q X 2013 Phys. Fluids 25 072104Google Scholar

  • 图 1  (a)实验装置结构; (b)诊断布局

    Fig. 1.  (a) Schematic of components of the experimental facility; (b) diagnostic setup.

    图 2  (a)实验装置等效电路; (b)装置短路放电的理论和实验电流、电压波形

    Fig. 2.  (a) Equivalent circuit of the experimental facility; (b) the current and voltage curves of short circuit.

    图 3  (a)充电40 kV实验的实测电流、电压波形; (b)铜丝上的沉积功率、能量

    Fig. 3.  (a) Experimental current and voltage waveforms at charging 40 kV; (b) deposited power and energy on copper wires.

    图 4  铜丝与电极的连接示意图

    Fig. 4.  Schematic diagram of connection between copper wire and electrodes.

    图 5  (a)铜丝电离过程和(b)电爆炸全过程的典型电流和电阻电压波形

    Fig. 5.  Typical current and resistive voltage waveforms of (a) Cu wire ionization and (b) electrical explosion process.

    图 6  不同充电条件下铜丝上的(a)电流、(b)功率、沉积能量和(c)等离子体体积及能量密度

    Fig. 6.  (a) Current, (b) power, deposited energy, (c) plasma volume and energy density in different voltages.

    图 7  气泡产生阶段的演化图像

    Fig. 7.  Evolution images of bubble generation.

    图 8  典型气泡脉动演化图像

    Fig. 8.  Typical images of bubble pulsation.

    图 9  气泡脉动过程中周围流体的动能、势能以及气泡总能量的典型实验波形

    Fig. 9.  Typical experimental waveforms of fluid kinetic energy, potential energy and bubble total energy.

    图 10  (a) RP理论模型在不同初始条件下的气泡膨胀轨迹模拟比较; (b)二种理论模型对气泡膨胀轨迹的模拟及与实验比较; (c)气泡质心垂直位移的实验与模拟结果比较

    Fig. 10.  Experimental data and simulation results of (a) bubble expansion trajectory in different initial conditions of the RP theoretical model, (b) bubble expansion trajectory by two theoretical models and (c) vertical migration of bubble centroid.

  • [1]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [2]

    Cole R H 1948 Underwater Explosion (Princeton: Princeton University Press

    [3]

    Plesset M 1949 J. Appl. Mech. 16 277Google Scholar

    [4]

    Gilmore F 1952 The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid (Pasadena: Hydrodynamics Laboratory California Institute of Technology) Tech. Report No. 26-4

    [5]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [6]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457Google Scholar

    [7]

    Lezzi A, Prosperetti A 1987 J. Fluid Mech. 185 289Google Scholar

    [8]

    Best J 1991 Ph. D. Dissertation (Wollongong: University of Wollongong

    [9]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584Google Scholar

    [10]

    姚熊亮, 汪玉, 张阿漫 2012 水下爆炸气泡动力学 (哈尔滨: 哈尔滨工程大学出版社)

    Yao X L, Wang Y, Zhang A M 2012 Bubble Dynamics of Underwater Explosion (Harbin: Harbin Engineering University Press

    [11]

    张阿漫, 姚熊亮 2008 物理学报 57 339Google Scholar

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339Google Scholar

    [12]

    张阿漫, 姚熊亮, 李佳 2008 物理学报 57 1672Google Scholar

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672Google Scholar

    [13]

    张阿漫, 王超, 王诗平, 程晓达 2012 物理学报 61 084701Google Scholar

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701Google Scholar

    [14]

    叶曦, 姚熊亮, 张阿漫, 庞福振 2013 物理学报 62 114702Google Scholar

    Ye X, Yao X L, Zhang A M, Pang F Z 2013 Acta Phys. Sin. 62 114702Google Scholar

    [15]

    李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701Google Scholar

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar

    [16]

    Zhang A M, Li S M, Cui P 2023 Phys. Fluids 35 033323Google Scholar

    [17]

    张阿漫, 明付仁, 刘云龙, 李帅, 王诗平 2023 中国舰船研究 18 139

    Zhang A M, Ming F R, Liu Y L, Li S, Wang S P 2023 Chin. J. Ship Res. 18 139

    [18]

    段超伟, 宋浦, 胡宏伟, 杨青, 冯海云 2022 爆破 39 140Google Scholar

    Duan W C, Song P, Hu H W, Yang Q, Feng H Y 2022 Blasting 39 140Google Scholar

    [19]

    Thomsen J M, Ruhl S F 1980 Mitigation of Explosion Bubble Pulsation Caused by the Deep Underwater Detonation of a Tapered Charge (Washington, D. C.: Director Defense Nuclear Agency) Phys. Int. Co. AD-A107804

    [20]

    Kriebel A R, Bechtel J S 1970 Hydro dynamic Data From Exploding Wires (Washington, D.C.: Office of Naval Research Department of the Navy) URS Res. Co. AD-706074

    [21]

    Buntzen R R 1962 The Use of Exploding Wires in the Study of Small-Scale Underwater Explosions (New York: Plenum Press) USRDL Tech. Report No. 195

    [22]

    Hege J S 1963 Hydra Program Determination of the Total Thermal Radiant Energy Emitted by an Underwater Exploding Wire (San Francisco: U.S. Naval Radiological Defense Laboratory) Def. Doc. Center AD-401342

    [23]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 Plasma Sci. Tech. 11 661Google Scholar

    [24]

    韩若愚, 吴佳玮, 周海滨, 邱爱慈 2017 电工技术学报 32 257

    Han R Y, Wu J W, Zhou H B, Qiu A C 2017 Trans. Chin. Eeletrotech. Soc. 32 257

    [25]

    吴坚, 阴国锋, 范云飞, 李兴文, 邱爱慈 2018 高电压技术 44 4003

    Wu J, Yin G F, Fan Y F, Li X W, Qiu A C 2018 High Voltage Eng. 44 4003

    [26]

    钱盾, 刘志刚, 邹晓兵, 王新新 2021 高电压技术 47 815

    Qian D, Liu Z G, Zou X B, Wang X X 2021 High Voltage Eng. 47 815

    [27]

    Antonov O, Gilburd L, Efimov S, Bazalitski G, Gurovich V T, Krasik Y E 2012 Phys. Plasmas 19 102702Google Scholar

    [28]

    Lauterborn W, Bolle H 1975 J. Fluid Mech. 72 391Google Scholar

    [29]

    宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 0641Google Scholar

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 0641Google Scholar

    [30]

    Jia Z W, Li D, Tian Y, Pan H P, Zhong Q, Yao Z F, Lu Y, Guo J J, Zheng R E 2023 Spectrochim. Acta, Part B 206 106713Google Scholar

    [31]

    梁川, 章林文, 李欣 2004 强激光与粒子束 16 787

    Liang C, Zhang L W, Li X 2004 High Power Laser Part. Beams 16 787

    [32]

    Oreshkin V I, Chaikovsky S A, Ratakhin N A, Grinenko A, Krasik Y E 2007 Phys. Plasmas 14 102703Google Scholar

    [33]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B. Fluids 42 69Google Scholar

    [34]

    Kolacek K, Prukner V, Schmidt J, Frolovo O, Straus J 2010 Laser Part. Beams 28 61Google Scholar

    [35]

    Wang Q X 2013 Phys. Fluids 25 072104Google Scholar

  • [1] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [2] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [3] 史冬岩, 王志凯, 张阿漫. 相同尺度下气泡与复杂壁面的耦合特性研究. 物理学报, 2014, 63(17): 174701. doi: 10.7498/aps.63.174701
    [4] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [5] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究. 物理学报, 2014, 63(19): 194703. doi: 10.7498/aps.63.194703
    [6] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [7] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [8] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [9] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [10] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究. 物理学报, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [11] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究. 物理学报, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [12] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究. 物理学报, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [13] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [14] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [15] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究. 物理学报, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [16] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟. 物理学报, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [17] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [18] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识. 物理学报, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [19] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [20] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
计量
  • 文章访问数:  549
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 修回日期:  2024-11-12
  • 上网日期:  2024-11-21
  • 刊出日期:  2024-12-20

/

返回文章
返回