搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST上RMP驱动等离子体自发旋转物理机制的实验研究

金仡飞 张洪明 尹相辉 吕波 CheonhoBae 叶凯萱 盛回 王士凡 赵海林 顾帅 袁泓 林子超 傅盛宇 卢迪安 符佳 王福地

引用本文:
Citation:

EAST上RMP驱动等离子体自发旋转物理机制的实验研究

金仡飞, 张洪明, 尹相辉, 吕波, CheonhoBae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地
cstr: 32037.14.aps.73.20241357

Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST

Jin Yi-Fei, Zhang Hong-Ming, Yin Xiang-Hui, Lü Bo, Cheonho Bae, Ye Kai-Xuan, Sheng Hui, Wang Shi-Fan, Zhao Hai-Lin, Gu Shuai, Yuan Hong, Lin Zi-Chao, Fu Sheng-Yu, Lu Di-An, Fu Jia, Wang Fu-Di
cstr: 32037.14.aps.73.20241357
PDF
HTML
导出引用
  • 等离子体自发旋转对托卡马克装置的约束性能和稳定性十分重要. 能否有效地诱导等离子体自发旋转来致稳电阻壁模对国际热核聚变实验堆(International Thermonuclear Experimental Reactor, ITER)的稳定运行尤为关键. 在韩国先进超导托卡马克(Korea Superconducting Tokamak Advanced Research, KSTAR)装置上首次实验证明了在特定参数下, 共振磁扰动(resonant magnetic perturbation, RMP)产生的新经典环向黏滞(neoclassical torodial viscosity, NTV)力矩能够驱动等离子体旋转. 先前在东方超环托卡马克(Experimental Advanced Superconducting Tokamak, EAST)的RMP实验中同样也观测到了RMP加入后等离子体旋转在同电流方向增加的实验现象, 然而与KSTAR不同, EAST上模拟计算的NTV力矩比中性束力矩小两个量级, 无法解释环向旋转速度的增加. 本文开展了进一步的研究, 首先通过实验方法测得了RMP产生的力矩分布, 与之前模拟得到的NTV力矩相比要大两个量级, 说明存在NTV以外的机制驱动等离子体旋转. 其次, 在实验中观察到旋转速度增大的同时也伴随有${\boldsymbol{E}}\times{\boldsymbol{B}}$速度的明显变化, 并且, 与实验测量得到的RMP产生的力矩分布一致, 表明${\boldsymbol{E}}\times{\boldsymbol{B}}$剪切的变化产生的残余应力可能是导致RMP加入后旋转速度增大的原因. 为了解释RMP加入后环向旋转速度的增大, 本文分析了RMP加入后随机磁场对大尺度湍流的影响, 发现各尺度湍流在随机磁场的背景下, 为了维持准中性条件, 小尺度湍流的增长可能会导致雷诺应力的增大. 在RMP加入期间, 雷诺应力驱动$ \boldsymbol{E}\times\boldsymbol{B} $剪切的增大会破坏湍流对称性, 产生残余应力驱动环向旋转. 最后,实验的统计结果也表明, RMP对环向旋转的驱动效果与湍流强度有关, 进一步验证了RMP加入${\boldsymbol{E}}\times{\boldsymbol{B}}$剪切产生的残余应力是驱动环向旋转变化的主要机制.
    Plasma spontaneous rotation significantly affects confinement performance and stability in tokamaks. Effectively inducing this rotation is essential for stabilizing resistive wall modes (RWMs) and ensuring the stable operation of the International Thermonuclear Experimental Reactor (ITER). Recent experiments conducted on the Korea Superconducting Tokamak Advanced Research (KSTAR) device demonstrated that resonant magnetic perturbations (RMPs) can induce neoclassical toroidal viscosity (NTV) torque under certain conditions, successfully driving plasma rotation. Similarly, on the Experimental Advanced Superconducting Tokamak (EAST), an increase in plasma rotation in the direction of the plasma current has been observed following RMP application. However, unlike the KSTAR findings, the NTV torque simulations for EAST are two orders of magnitude lower than experimental measurements, indicating additional mechanisms beyond NTV may drive the observed plasma rotations. In this paper, to investigate these mechanisms, momentum balance, causality, and statistical analyses are performed at EAST. An increase in rotation velocity is found to correlate with significant changes in the ${\boldsymbol{E}}\times{\boldsymbol{B}}$ flow, matching the RMP-induced torque distribution. This alignment suggests that residual stress, arising from variations in ${\boldsymbol{E}}\times{\boldsymbol{B}}$ shear, may cause the observed rotation to increase. The effects of stochastic fields on multi-scale turbulence are considered as a possible explanation for correlations between ${\boldsymbol{E}}\times{\boldsymbol{B}}$ velocity and toroidal rotation. Stochastic fields appear to enhance the inertia of large-scale turbulence while driving small-scale turbulence to maintain quasi-neutrality. The resulting turbulent Reynolds stress, generated by small-scale turbulence, may account for the increases of the observed ${\boldsymbol{E}}\times{\boldsymbol{B}}$ velocity during RMP application. Statistical analysis further highlights the importance of island width in understanding the threshold RMP current in ramping-up RMP experiments, supporting the conclusion that turbulence-driven ${\boldsymbol{E}}\times{\boldsymbol{B}}$ shear-related residual stress is the key mechanism of driving plasma rotation following RMP application.
      通信作者: 张洪明, hmzhang@ipp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12175278, U23A2077)、湖南省教育厅重点项目和青年项目(批准号: 21B0439)和中国科学院国际人才计划(批准号: 2022VMB0007)资助的课题.
      Corresponding author: Zhang Hong-Ming, hmzhang@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175278, U23A2077), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 21B0439), and the Chinese Academy of Science President’s International Fellowship Initiative, China (Grant No. 2022VMB0007).
    [1]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89 235001Google Scholar

    [2]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19 052502Google Scholar

    [3]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51 094027Google Scholar

    [4]

    Diamond P, Kosuga Y, Gürcan Ö D, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53 104019Google Scholar

    [5]

    Ida K, Rice J 2014 Nucl. Fusion 54 045001Google Scholar

    [6]

    Rice J E 2016 Plasma Phys. Control. Fusion 58 083001Google Scholar

    [7]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61 124003Google Scholar

    [8]

    Taylor G I, Shaw W N 1915 Philos. Trans. R. Soc. London, Ser. A 215 1Google Scholar

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar

    [10]

    Gürcan ff D, Diamond P H, Hahm T S, Singh R 2007 Phys. Plasmas 14 042306Google Scholar

    [11]

    Diamond P H, McDevitt C J, Gürcan Ö D, Hahm T S, Naulin V 2008 Phys. Plasmas 15 012303Google Scholar

    [12]

    Gürcan Ö D, Diamond P H, Hennequin P, McDevitt C J, Garbet X, Bourdelle C 2010 Phys. Plasmas 17 112309Google Scholar

    [13]

    Kosuga Y, Diamond P H, Gürcan Ö D 2010 Phys. Plasmas 17 102313Google Scholar

    [14]

    Fedorczak N, Diamond P, Tynan G, Manz P 2012 Nucl. Fusion 52 103013Google Scholar

    [15]

    Wang L, Diamond P H 2013 Phys. Rev. Lett. 110 265006Google Scholar

    [16]

    Evans T, Fenstermacher M, Moyer R, Osborne T, Watkins J, Gohil P, Joseph I, Schaffer M, Baylor L, Bécoulet M, Boedo J, Burrell K, deGrassie J, Finken K, Jernigan T, Jakubowski M, Lasnier C, Lehnen M, Leonard A, Lonnroth J, Nardon E, Parail V, Schmitz O, Unterberg B, West W 2008 Nucl. Fusion 48 024002Google Scholar

    [17]

    Sun Y, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [18]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [19]

    Xiong J Y, Jiang Z H, Jiao Z X, Li Z, Liang Y F, Chen Z Y, Ding Y H, Team J T 2023 Chin. Phys. B 32 075210Google Scholar

    [20]

    潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群 2023 物理学报 72 135203Google Scholar

    Pan S S, Duan Y M, Xu L Q, Chao Y, Zhong G Q, Sun Y W, Sheng H, Liu H Q, Chu Y Q, Lü B, Jin Y F, Hu L Q 2023 Acta Phys. Sin. 72 135203Google Scholar

    [21]

    Solomon W, Burrell K, Garofalo A, Cole A, Budny R, deGrassie J, Heidbrink W, Jackson G, Lanctot M, Nazikian R, Reimerdes H, Strait E, Van Zeeland M 2009 Nucl. Fusion 49 085005Google Scholar

    [22]

    Sun Y, Liang Y, Koslowski H R, et al. 2010 Plasma Phys. Control. Fusion 52 105007Google Scholar

    [23]

    Callen J 2011 Nucl. Fusion 51 094026Google Scholar

    [24]

    Sun Y, Liang Y, Shaing K, et al. 2012 Nucl. Fusion 52 083007Google Scholar

    [25]

    Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B, J-TEXT Team 2018 Plasma Phys. Controlled Fusion 60 035007Google Scholar

    [26]

    Jiang M, Xu Y, Zhong W, Li D, Huang Z, Yang Z, Shi Z, Wang N, Cheng Z, Yang Z, Liang A, Shi P, Wen J, Chen Z, Chen Z, Pan X, Shi P, Ruan B, Guo D, Cai Q, Hu Q, Wang S, Ding Y, Ji X, Li Y, Liu Y, Xu M 2019 Nucl. Fusion 59 046003Google Scholar

    [27]

    陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建 2020 物理学报 69 195201Google Scholar

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69 195201Google Scholar

    [28]

    Li J, Lin Z, Cheng J, Wu Z X, Xu J, He Y, Huang Z H, Liang A S, Sun T F, Dong J Q, Shi Z B, Zhong W, Xu M, Team H A 2024 Phys. Plasmas 31 042502Google Scholar

    [29]

    Waltz R E, Ferraro N M 2015 Phys. Plasmas 22 042507Google Scholar

    [30]

    Sugama H, Watanabe T H 2006 Phys. Plasmas 13 012501Google Scholar

    [31]

    Leconte M, Diamond P H 2012 Phys. Plasmas 19 055903Google Scholar

    [32]

    Terry P W, Pueschel M J, Carmody D, Nevins W M 2013 Phys. Plasmas 20 112502Google Scholar

    [33]

    Leconte M, Diamond P, Xu Y 2014 Nucl. Fusion 54 013004Google Scholar

    [34]

    Choi G, Hahm T 2018 Nucl. Fusion 58 026001Google Scholar

    [35]

    Williams Z, Pueschel M, Terry P, Nishizawa T, Kriete D, Nornberg M, Sarff J, McKee G, Orlov D, Nogami S 2020 Nucl. Fusion 60 096004Google Scholar

    [36]

    Xu Y, Carralero D, Hidalgo C, Jachmich S, Manz P, Martines E, Van Milligen B, Pedrosa M, Ramisch M, Shesterikov I, Silva C, Spolaore M, Stroth U, Vianello N 2011 Nucl. Fusion 51 063020Google Scholar

    [37]

    Basu D, Nakajima M, Melnikov A, McColl D, Rohollahi A, Elgriw S, Xiao C, Hirose A 2018 Nucl. Fusion 58 024001Google Scholar

    [38]

    Zhao K, Shi Y, Hahn S, Diamond P, Sun Y, Cheng J, Liu H, Lie N, Chen Z, Ding Y, Chen Z, Rao B, Leconte M, Bak J, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Yan L, Dong J, Zhuang G 2015 Nucl. Fusion 55 073022Google Scholar

    [39]

    Zhao K, Shi Y, Liu H, Diamond P, Li F, Cheng J, Chen Z, Nie L, Ding Y, Wu Y, Chen Z, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Xu J, Yan L, Dong J, Zhuang G, Team J T 2016 Nucl. Fusion 56 076005Google Scholar

    [40]

    Zhao K, Chen Z, Shi Y, et al. 2020 Nucl. Fusion 60 106030Google Scholar

    [41]

    Garofalo A M, Burrell K H, DeBoo J C, deGrassie J S, Jackson G L, Lanctot M, Reimerdes H, Schaffer M J, Solomon W M, Strait E J 2008 Phys. Rev. Lett. 101 195005Google Scholar

    [42]

    Callen J D, Cole A J, Hegna C C 2009 Phys. Plasmas 16 082504Google Scholar

    [43]

    Sun Y, Liang Y, Shaing K C, Koslowski H R, Wiegmann C, Zhang T 2010 Phys. Rev. Lett. 105 145002Google Scholar

    [44]

    Sun Y, Liang Y, Shaing K, Koslowski H, Wiegmann C, Zhang T 2011 Nucl. Fusion 51 053015Google Scholar

    [45]

    Sun Y, Shaing K, Liang Y, Casper T, Loarte A, Shen B, Wan B 2013 Nucl. Fusion 53 093010Google Scholar

    [46]

    Shaing K, Ida K, Sabbagh S 2015 Nucl. Fusion 55 125001Google Scholar

    [47]

    Li H, Sun Y, Wang L, He K, Shaing K C 2021 Nucl. Fusion 61 104002Google Scholar

    [48]

    Yang S, Park J K, Na Y S, Wang Z, Ko W, In Y, Lee J, Lee K, Kim S 2019 Phys. Rev. Lett. 123 095001Google Scholar

    [49]

    Sheng H, Lyu B, Sun Y W, Li H H, Li Y Y, Bae C, Liu Y Q, Jin Y F, Mao S F, Yan X T, Xie P C, Ma Q, Wang H H, Shi T H, Zang Q, Qian J P, Jia M N, Chu N, Ye C, Chang Y Y, Wu X M, Zhang Y N, Yang H, Wu M F, Ye M Y, EAST Team 2024 Phys. Plasmas 31 032507Google Scholar

    [50]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, the East Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [51]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, Von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428Google Scholar

    [52]

    Fu S, Yin X, Fu J, Li Y, Wang F, Zhang H, Bae C, Lyu B, Huang Q, Shen Y, Li Y, He L, Jin Y, Gong X 2022 Rev. Sci. Instrum. 93 043504Google Scholar

    [53]

    Li G, Wei X, Liu H, Shen J, Jie Y, Lian H, Zeng L, Zou Z, Zhang J, Wang S 2017 Plasma Sci. Technol. 19 084003Google Scholar

    [54]

    Wang Y, Zhang T, Liu X, Zhao C, Qu H, Li G, Wu M, Ye K, Wen F, Xiang H, Geng K, Zhong F, Huang J, Han X, Zhang S, Liu S, Nan J, Gao X 2019 Fusion Eng. Des. 148 111286Google Scholar

    [55]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 89 10H111Google Scholar

    [56]

    Wu M, Wen F, Xiang H, Zhang T, Mao G, Liu Z, Wang Y, Li G, Liu Y, Geng K, Zhong F, Ye K, Huang J, Zhou Z, Han X, Zhang S, Zhuang G, Gao X 2020 JINST 15 P12009Google Scholar

    [57]

    Zhou C, Liu A D, Zhang X H, Hu J Q, Wang M Y, Li H, Lan T, Xie J L, Sun X, Ding W X, Liu W D, Yu C X 2013 Rev. Sci. Instrum. 84 103511Google Scholar

    [58]

    Goldston R J 1981 J. Comput. Phys. 43 61Google Scholar

    [59]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [60]

    McDermott R M, Angioni C, Dux R, Fable E, Pütterich T, Ryter F, Salmi A, Tala T, Tardini G, Viezzer E, the ASDEX Upgrade Team 2011 Plasma Phys. Control. Fusion 53 124013Google Scholar

    [61]

    Zhang X H, Liu A D, Zhou C, Hu J Q, Wang M Y, Yu C X, Liu W D, Li H, Lan T, Xie J L 2015 Chin. Phys. Lett. 32 125201Google Scholar

    [62]

    Conway G D, Schirmer J, Klenge S, Suttrop W, Holzhauer E, the ASDEX Upgrade Team 2004 Plasma Phys. Control. Fusion 46 951Google Scholar

    [63]

    Lao L, John H S, Stambaugh R, Pfeiffer W 1985 Nucl. Fusion 25 1421Google Scholar

    [64]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [65]

    Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Zang Q, Jia T Q, Ma Q, Gu S, Chu N, He K Y, Jia M N, Wu X M, Xie P C, Sheng H, Yang H, Huang L S, Shen B, Li M H, Qian J P, the EAST Team 2023 Nucl. Fusion 63 076004Google Scholar

    [66]

    Cao M, Diamond P H 2022 Plasma Phys. Control. Fusion 64 035016Google Scholar

  • 图 1  EAST上, (a) CXRS和NBI的布局俯视图; (b) CXRS测量位置和RMP线圈的极向分布

    Fig. 1.  (a) Top view of the CXRS and NBI layout on the EAST tokamak; (b) poloidal distribution of RMP coils on the EAST tokamak.

    图 2  (a), (b)上、下RMP线圈电流环向分布的时间演化; (c)线平均密度${\bar n}_{\rm e} $的时间演化; (d)芯部电子温度${ T}_{\rm e 0} $的时间演化; (e)芯部旋转速度$V_{\phi 0} $的时间演化; (f)芯部离子温度${ T}_{\rm i 0} $的时间演化

    Fig. 2.  Time evolutions of toroidal distribution for (a) upper and (b) lower RMP coil currents; time evolutions of (c) line-averaged density, (d) central electron temperature, (e) central rotation velocity and (f) central ion temperature.

    图 3  不同RMP相位加入前后的电子密度剖面(上)、电子温度和离子温度剖面(中)、环向旋转速度剖面(下). 蓝色对应RMP加入前的时刻, 红色对应RMP加入后的时刻

    Fig. 3.  Electron density (top), electron and ion temperature (middle), and toroidal rotation velocity profiles (bottom) before and after the application of RMP with different phases. The blue curves represent the conditions before RMP application, while the red curves correspond to the conditions after RMP application.

    图 4  (a) $ {\text{δ}} B_{{\mathrm{r}}} $环向分布的时间演化; (b) $ {\text{δ}} B_{{\mathrm{r}}} $$ n=1 $分量的时间演化

    Fig. 4.  Time evolutions of (a) toroidal distribution of $ {\text{δ}} B_{{\mathrm{r}}} $ and (b) $ n = 1 $ component of $ {\text{δ}} B_{{\mathrm{r}}} $.

    图 5  (a)不同频率微波密度涨落反射计的截止密度; (b) 79.2 GHz密度剖面反射计测量的复信号功率谱; (c)—(e) 79.2 GHz, 85.2 GHz以及91.8 GHz三道使用重心法从复信号双边功率谱中计算得到的多普勒频移的时间演化

    Fig. 5.  (a) Cutoff densities of microwave density fluctuation reflectometry at different frequencies; (b) power spectrum of the complex signal measured by the 79.2 GHz density fluctuation reflectometry; (c)–(e) Doppler shifts deriving from center of gravity of the double-sided power spectrum of 79.2, 85.2, and 91.8 GHz channels.

    图 6  (a)在普朗特常数为1的假设下, 根据离子功率平衡得到的离子热扩散系数(黑)以及动量对流速度(红)分布; (b)估算得到的RMP产生的力矩分布

    Fig. 6.  (a) Ion heat diffusivity (black) and momentum convection velocity (red), obtained from ion power balance using TRANSP/NUBEAM under the assumption of a Prandtl number of 1; (b) estimated torque distribution generated by the RMP.

    图 7  (a) RMP线圈电流(黑)以及线平均密度(蓝)、(b) 4.6 GHz低杂波(黑)和内感(蓝)、(c)电子温度、(d)电子温度梯度以及(e) R ≈ 2.2 m处环向旋转速度(红)和$ {\boldsymbol{E}}\times{\boldsymbol{B}} $速度(蓝)的时间演化

    Fig. 7.  Time evolutions of (a) the RMP coil current (black) and line-averaged density (blue), (b) 4.6 GHz lower hybrid wave power (black) and internal inductance (blue), (c) electron temperature and (d) their gradients at various locations, (e) toroidal rotation (red) and $ {\boldsymbol{E}}\times{\boldsymbol{B}} $ (blue) velocities at R ≈ 2.2 m.

    图 8  环向旋转速度增量与电子温度梯度的统计结果

    Fig. 8.  Statistical results of the increment in toroidal rotation velocity as a function of the electron temperature gradient.

  • [1]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89 235001Google Scholar

    [2]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19 052502Google Scholar

    [3]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51 094027Google Scholar

    [4]

    Diamond P, Kosuga Y, Gürcan Ö D, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53 104019Google Scholar

    [5]

    Ida K, Rice J 2014 Nucl. Fusion 54 045001Google Scholar

    [6]

    Rice J E 2016 Plasma Phys. Control. Fusion 58 083001Google Scholar

    [7]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61 124003Google Scholar

    [8]

    Taylor G I, Shaw W N 1915 Philos. Trans. R. Soc. London, Ser. A 215 1Google Scholar

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar

    [10]

    Gürcan ff D, Diamond P H, Hahm T S, Singh R 2007 Phys. Plasmas 14 042306Google Scholar

    [11]

    Diamond P H, McDevitt C J, Gürcan Ö D, Hahm T S, Naulin V 2008 Phys. Plasmas 15 012303Google Scholar

    [12]

    Gürcan Ö D, Diamond P H, Hennequin P, McDevitt C J, Garbet X, Bourdelle C 2010 Phys. Plasmas 17 112309Google Scholar

    [13]

    Kosuga Y, Diamond P H, Gürcan Ö D 2010 Phys. Plasmas 17 102313Google Scholar

    [14]

    Fedorczak N, Diamond P, Tynan G, Manz P 2012 Nucl. Fusion 52 103013Google Scholar

    [15]

    Wang L, Diamond P H 2013 Phys. Rev. Lett. 110 265006Google Scholar

    [16]

    Evans T, Fenstermacher M, Moyer R, Osborne T, Watkins J, Gohil P, Joseph I, Schaffer M, Baylor L, Bécoulet M, Boedo J, Burrell K, deGrassie J, Finken K, Jernigan T, Jakubowski M, Lasnier C, Lehnen M, Leonard A, Lonnroth J, Nardon E, Parail V, Schmitz O, Unterberg B, West W 2008 Nucl. Fusion 48 024002Google Scholar

    [17]

    Sun Y, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [18]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [19]

    Xiong J Y, Jiang Z H, Jiao Z X, Li Z, Liang Y F, Chen Z Y, Ding Y H, Team J T 2023 Chin. Phys. B 32 075210Google Scholar

    [20]

    潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群 2023 物理学报 72 135203Google Scholar

    Pan S S, Duan Y M, Xu L Q, Chao Y, Zhong G Q, Sun Y W, Sheng H, Liu H Q, Chu Y Q, Lü B, Jin Y F, Hu L Q 2023 Acta Phys. Sin. 72 135203Google Scholar

    [21]

    Solomon W, Burrell K, Garofalo A, Cole A, Budny R, deGrassie J, Heidbrink W, Jackson G, Lanctot M, Nazikian R, Reimerdes H, Strait E, Van Zeeland M 2009 Nucl. Fusion 49 085005Google Scholar

    [22]

    Sun Y, Liang Y, Koslowski H R, et al. 2010 Plasma Phys. Control. Fusion 52 105007Google Scholar

    [23]

    Callen J 2011 Nucl. Fusion 51 094026Google Scholar

    [24]

    Sun Y, Liang Y, Shaing K, et al. 2012 Nucl. Fusion 52 083007Google Scholar

    [25]

    Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B, J-TEXT Team 2018 Plasma Phys. Controlled Fusion 60 035007Google Scholar

    [26]

    Jiang M, Xu Y, Zhong W, Li D, Huang Z, Yang Z, Shi Z, Wang N, Cheng Z, Yang Z, Liang A, Shi P, Wen J, Chen Z, Chen Z, Pan X, Shi P, Ruan B, Guo D, Cai Q, Hu Q, Wang S, Ding Y, Ji X, Li Y, Liu Y, Xu M 2019 Nucl. Fusion 59 046003Google Scholar

    [27]

    陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建 2020 物理学报 69 195201Google Scholar

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69 195201Google Scholar

    [28]

    Li J, Lin Z, Cheng J, Wu Z X, Xu J, He Y, Huang Z H, Liang A S, Sun T F, Dong J Q, Shi Z B, Zhong W, Xu M, Team H A 2024 Phys. Plasmas 31 042502Google Scholar

    [29]

    Waltz R E, Ferraro N M 2015 Phys. Plasmas 22 042507Google Scholar

    [30]

    Sugama H, Watanabe T H 2006 Phys. Plasmas 13 012501Google Scholar

    [31]

    Leconte M, Diamond P H 2012 Phys. Plasmas 19 055903Google Scholar

    [32]

    Terry P W, Pueschel M J, Carmody D, Nevins W M 2013 Phys. Plasmas 20 112502Google Scholar

    [33]

    Leconte M, Diamond P, Xu Y 2014 Nucl. Fusion 54 013004Google Scholar

    [34]

    Choi G, Hahm T 2018 Nucl. Fusion 58 026001Google Scholar

    [35]

    Williams Z, Pueschel M, Terry P, Nishizawa T, Kriete D, Nornberg M, Sarff J, McKee G, Orlov D, Nogami S 2020 Nucl. Fusion 60 096004Google Scholar

    [36]

    Xu Y, Carralero D, Hidalgo C, Jachmich S, Manz P, Martines E, Van Milligen B, Pedrosa M, Ramisch M, Shesterikov I, Silva C, Spolaore M, Stroth U, Vianello N 2011 Nucl. Fusion 51 063020Google Scholar

    [37]

    Basu D, Nakajima M, Melnikov A, McColl D, Rohollahi A, Elgriw S, Xiao C, Hirose A 2018 Nucl. Fusion 58 024001Google Scholar

    [38]

    Zhao K, Shi Y, Hahn S, Diamond P, Sun Y, Cheng J, Liu H, Lie N, Chen Z, Ding Y, Chen Z, Rao B, Leconte M, Bak J, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Yan L, Dong J, Zhuang G 2015 Nucl. Fusion 55 073022Google Scholar

    [39]

    Zhao K, Shi Y, Liu H, Diamond P, Li F, Cheng J, Chen Z, Nie L, Ding Y, Wu Y, Chen Z, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Xu J, Yan L, Dong J, Zhuang G, Team J T 2016 Nucl. Fusion 56 076005Google Scholar

    [40]

    Zhao K, Chen Z, Shi Y, et al. 2020 Nucl. Fusion 60 106030Google Scholar

    [41]

    Garofalo A M, Burrell K H, DeBoo J C, deGrassie J S, Jackson G L, Lanctot M, Reimerdes H, Schaffer M J, Solomon W M, Strait E J 2008 Phys. Rev. Lett. 101 195005Google Scholar

    [42]

    Callen J D, Cole A J, Hegna C C 2009 Phys. Plasmas 16 082504Google Scholar

    [43]

    Sun Y, Liang Y, Shaing K C, Koslowski H R, Wiegmann C, Zhang T 2010 Phys. Rev. Lett. 105 145002Google Scholar

    [44]

    Sun Y, Liang Y, Shaing K, Koslowski H, Wiegmann C, Zhang T 2011 Nucl. Fusion 51 053015Google Scholar

    [45]

    Sun Y, Shaing K, Liang Y, Casper T, Loarte A, Shen B, Wan B 2013 Nucl. Fusion 53 093010Google Scholar

    [46]

    Shaing K, Ida K, Sabbagh S 2015 Nucl. Fusion 55 125001Google Scholar

    [47]

    Li H, Sun Y, Wang L, He K, Shaing K C 2021 Nucl. Fusion 61 104002Google Scholar

    [48]

    Yang S, Park J K, Na Y S, Wang Z, Ko W, In Y, Lee J, Lee K, Kim S 2019 Phys. Rev. Lett. 123 095001Google Scholar

    [49]

    Sheng H, Lyu B, Sun Y W, Li H H, Li Y Y, Bae C, Liu Y Q, Jin Y F, Mao S F, Yan X T, Xie P C, Ma Q, Wang H H, Shi T H, Zang Q, Qian J P, Jia M N, Chu N, Ye C, Chang Y Y, Wu X M, Zhang Y N, Yang H, Wu M F, Ye M Y, EAST Team 2024 Phys. Plasmas 31 032507Google Scholar

    [50]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, the East Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [51]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, Von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428Google Scholar

    [52]

    Fu S, Yin X, Fu J, Li Y, Wang F, Zhang H, Bae C, Lyu B, Huang Q, Shen Y, Li Y, He L, Jin Y, Gong X 2022 Rev. Sci. Instrum. 93 043504Google Scholar

    [53]

    Li G, Wei X, Liu H, Shen J, Jie Y, Lian H, Zeng L, Zou Z, Zhang J, Wang S 2017 Plasma Sci. Technol. 19 084003Google Scholar

    [54]

    Wang Y, Zhang T, Liu X, Zhao C, Qu H, Li G, Wu M, Ye K, Wen F, Xiang H, Geng K, Zhong F, Huang J, Han X, Zhang S, Liu S, Nan J, Gao X 2019 Fusion Eng. Des. 148 111286Google Scholar

    [55]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 89 10H111Google Scholar

    [56]

    Wu M, Wen F, Xiang H, Zhang T, Mao G, Liu Z, Wang Y, Li G, Liu Y, Geng K, Zhong F, Ye K, Huang J, Zhou Z, Han X, Zhang S, Zhuang G, Gao X 2020 JINST 15 P12009Google Scholar

    [57]

    Zhou C, Liu A D, Zhang X H, Hu J Q, Wang M Y, Li H, Lan T, Xie J L, Sun X, Ding W X, Liu W D, Yu C X 2013 Rev. Sci. Instrum. 84 103511Google Scholar

    [58]

    Goldston R J 1981 J. Comput. Phys. 43 61Google Scholar

    [59]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [60]

    McDermott R M, Angioni C, Dux R, Fable E, Pütterich T, Ryter F, Salmi A, Tala T, Tardini G, Viezzer E, the ASDEX Upgrade Team 2011 Plasma Phys. Control. Fusion 53 124013Google Scholar

    [61]

    Zhang X H, Liu A D, Zhou C, Hu J Q, Wang M Y, Yu C X, Liu W D, Li H, Lan T, Xie J L 2015 Chin. Phys. Lett. 32 125201Google Scholar

    [62]

    Conway G D, Schirmer J, Klenge S, Suttrop W, Holzhauer E, the ASDEX Upgrade Team 2004 Plasma Phys. Control. Fusion 46 951Google Scholar

    [63]

    Lao L, John H S, Stambaugh R, Pfeiffer W 1985 Nucl. Fusion 25 1421Google Scholar

    [64]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [65]

    Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Zang Q, Jia T Q, Ma Q, Gu S, Chu N, He K Y, Jia M N, Wu X M, Xie P C, Sheng H, Yang H, Huang L S, Shen B, Li M H, Qian J P, the EAST Team 2023 Nucl. Fusion 63 076004Google Scholar

    [66]

    Cao M, Diamond P H 2022 Plasma Phys. Control. Fusion 64 035016Google Scholar

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241263
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [6] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [7] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群. EAST托卡马克上共振磁扰动对锯齿行为的影响. 物理学报, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [8] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [9] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [10] 苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建. 托卡马克等离子体中共振磁扰动场放大效应对离子轨道特性的作用. 物理学报, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [11] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程. 物理学报, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [12] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [13] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [14] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [15] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [16] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [17] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [18] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
计量
  • 文章访问数:  778
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 修回日期:  2024-10-22
  • 上网日期:  2024-11-12
  • 刊出日期:  2024-12-20

/

返回文章
返回