-
等离子体自发旋转对托卡马克装置的约束性能和稳定性十分重要。能否有效地诱导等离子体自发旋转来致稳电阻壁模对国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)的稳定运行尤为关键。在韩国先进超导托卡马克(Korea Superconducting TokamakAavanced Research,KSTAR)装置上首次实验证明了在特定参数下,共振磁扰动(Resonant Magnetic Perturbation,RMP)产生的新经典环向粘滞(Neoclassical Torodial Viscosity,NTV)力矩能够驱动等离子体旋转。在东方超环托卡马克(Experimental Advanced Superconducting Tokamak,EAST)的RMP实验中同样也观测到了RMP加入后等离子体旋转在同电流方向增加的实验现象,与KSTAR不同,EAST上模拟计算的NTV力矩比实验测得RMP产生的力矩小2个量级,说明存在NTV以外的机制驱动等离子体旋转。在EAST的实验中,旋转速度增大的同时也伴随有 E × B 速度的明显变化,并且与实验测量得到的RMP产生的力矩分布一致,表明 E × B 剪切的变化产生的残余应力可能是导致RMP加入后旋转速度增大的原因。实验的统计结果也表明,RMP对环向旋转的驱动效果与湍流强度有关,进一步验证了RMP加入 E × B 剪切产生的残余应力是驱动环向旋转变化的主要机制。Plasma spontaneous rotation significantly influences confinement performance and stability in tokamaks. Effectively inducing this rotation is essential for stabilizing resistive wall modes (RWMs) and ensuring the stable operation of the International Thermonuclear Experimental Reactor (ITER). Recent experiments on the Korea Superconducting Tokamak Advanced Research (KSTAR) device demonstrated that resonant magnetic perturbations (RMPs) can induce neoclassical toroidal viscosity (NTV) torque under certain conditions, successfully driving plasma rotation. Similarly, an increase in plasma rotation in the direction of the plasma current following RMP application has been observed on the Experimental Advanced Superconducting Tokamak (EAST). However, unlike the KSTAR findings, NTV torque simulations for EAST are two orders of magnitude lower than experimental measurements, suggesting additional mechanisms beyond NTV may be driving the observed plasma rotations. To investigate these mechanisms, momentum balance, causality, and statistical analyses have been performed at EAST. An increase in rotation velocity has been found to correlate with significant changes in the E × B flow, matching the RMP-induced torque distribution. This alignment suggests that residual stress, arising from variations in E × B shear, may drive the observed rotation increases. The effects of stochastic fields on multi-scale turbulence are proposed as a possible explanation for correlations between E × B velocity and toroidal rotation. Stochastic fields appear to enhance the inertia of large-scale turbulence while driving small-scale turbulence to maintain quasi-neutrality. The resulting turbulent Reynolds stress, generated by small-scale turbulence, may account for the observed E × B velocity increases during RMP application. Statistical analysis further highlights the importance of island width in understanding the threshold RMP current in ramping-up RMP experiments, supporting the conclusion that turbulence-driven E × B shear-related residual stress is the key mechanism driving plasma rotation following RMP application.
-
Keywords:
- tokamak /
- momentum transport /
- intrinsic rotation /
- RMP
-
[1] Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89235001
[2] Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19052502
[3] Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51094027
[4] Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53104019
[5] Ida K, Rice J 2014 Nucl. Fusion 54045001
[6] Rice J E 2016 Plasma Phys. Control. Fusion 58083001
[7] Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61124003
[8] Taylor G I, Shaw W N 1915 Phil. Trans. R. Soc. A 2151
[9] Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35
[10] Gürcan ff D, Diamond P H, Hahm T S, Singh R 2007 Phys. Plasmas 14042306
[11] Diamond P H, McDevitt C J, Gürcan ff D, Hahm T S, Naulin V 2008 Phys. Plasmas 15012303
[12] Gürcan ff D, Diamond P H, Hennequin P, McDevitt C J, Garbet X, Bourdelle C 2010 Phys. Plasmas 17112309
[13] Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17102313
[14] Fedorczak N, Diamond P, Tynan G, Manz P 2012 Nucl. Fusion 52103013
[15] Wang L, Diamond P H 2013 Phys. Rev. Lett. 110265006
[16] Evans T, Fenstermacher M, Moyer R, Osborne T, Watkins J, Gohil P, Joseph I, Schaffer M, Baylor L, Bécoulet M, Boedo J, Burrell K, deGrassie J, Finken K, Jernigan T, Jakubowski M, Lasnier C, Lehnen M, Leonard A, Lonnroth J, Nardon E, Parail V, Schmitz O, Unterberg B, West W 2008 Nucl. Fusion 48024002
[17] Sun Y, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B 2016 Phys. Rev. Lett. 117115001
[18] Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71075202(in Chinese) [李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子2022物理学报71075202]
[19] Xiong J Y, Jiang Z H, Jiao Z X, Li Z, Liang Y F, Chen Z Y, Ding Y H, Team J T 2023 Chinese Phys. B 32075210
[20] Pan S S, Duan Y M, Xu L Q, Chao Y, Zhong G Q, Sun Y W, Sheng H, Liu H Q, Chu Y Q, Lyu B, Jin Y F, Hu L Q 2023 Acta Phys. Sin. 72135203(in Chinese) [潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群2023物理学报72135203]
[21] Solomon W, Burrell K, Garofalo A, Cole A, Budny R, deGrassie J, Heidbrink W, Jackson G, Lanctot M, Nazikian R, Reimerdes H, Strait E, Van Zeeland M 2009 Nucl. Fusion 49085005
[22] Sun Y, Liang Y, Koslowski H R, Jachmich S, Alfier A, Asunta O, Corrigan G, Giroud C, Gryaznevich M P, Harting D, Hender T, Nardon E, Naulin V, Parail V, Tala T, Wiegmann C, Wiesen S, JETEFDA contributors 2010 Plasma Phys. Control. Fusion 52105007
[23] Callen J 2011 Nucl. Fusion 51094026
[24] Sun Y, Liang Y, Shaing K, Liu Y, Koslowski H, Jachmich S, Alper B, Alfier A, Asunta O, Buratti P, Corrigan G, Delabie E, Giroud C, Gryaznevich M, Harting D, Hender T, Nardon E, Naulin V, Parail V, Tala T, Wiegmann C, Wiesen S, Zhang T 2012 Nucl. Fusion 52083007
[25] Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B, Team J T 2018 Plasma Phys. Control. Fusion 60035007
[26] Jiang M, Xu Y, Zhong W, Li D, Huang Z, Yang Z, Shi Z, Wang N, Cheng Z, Yang Z, Liang A, Shi P, Wen J, Chen Z, Chen Z, Pan X, Shi P, Ruan B, Guo D, Cai Q, Hu Q, Wang S, Ding Y, Ji X, Li Y, Liu Y, Xu M 2019 Nucl. Fusion 59046003
[27] Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69195201(in Chinese) [陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建2020物理学报69195201]
[28] Li J, Lin Z, Cheng J, Wu Z X, Xu J, He Y, Huang Z H, Liang A S, Sun T F, Dong J Q, Shi Z B, Zhong W, Xu M, Team H A 2024 Phys. Plasmas 31042502
[29] Waltz R E, Ferraro N M 2015 Phys. Plasmas 22042507
[30] Sugama H, Watanabe T H 2006 Phys. Plasmas 13012501
[31] Leconte M, Diamond P H 2012 Phys. Plasmas 19055903
[32] Terry P W, Pueschel M J, Carmody D, Nevins W M 2013 Phys. Plasmas 20112502
[33] Leconte M, Diamond P, Xu Y 2014 Nucl. Fusion 54013004
[34] Choi G, Hahm T 2018 Nucl. Fusion 58026001
[35] Williams Z, Pueschel M, Terry P, Nishizawa T, Kriete D, Nornberg M, Sarff J, McKee G, Orlov D, Nogami S 2020 Nucl. Fusion 60096004
[36] Xu Y, Carralero D, Hidalgo C, Jachmich S, Manz P, Martines E, Van Milligen B, Pedrosa M, Ramisch M, Shesterikov I, Silva C, Spolaore M, Stroth U, Vianello N 2011 Nucl. Fusion 51063020
[37] Basu D, Nakajima M, Melnikov A, McColl D, Rohollahi A, Elgriw S, Xiao C, Hirose A 2018 Nucl. Fusion 58024001
[38] Zhao K, Shi Y, Hahn S, Diamond P, Sun Y, Cheng J, Liu H, Lie N, Chen Z, Ding Y, Chen Z, Rao B, Leconte M, Bak J, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Yan L, Dong J, Zhuang G 2015 Nucl. Fusion 55073022
[39] Zhao K, Shi Y, Liu H, Diamond P, Li F, Cheng J, Chen Z, Nie L, Ding Y, Wu Y, Chen Z, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Xu J, Yan L, Dong J, Zhuang G, team J T 2016 Nucl. Fusion 56076005
[40] Zhao K, Chen Z, Shi Y, Diamond P, Dong J, Chen Z, Ding Y, Zhuang G, Liu Y, Zhang H, Chen Y, Liu H, Cheng J, Nie L, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Li J, Jin W, Xu J, Yan L, Liang Y, Xie Y, Liu B 2020 Nucl. Fusion 60106030
[41] Garofalo A M, Burrell K H, DeBoo J C, deGrassie J S, Jackson G L, Lanctot M, Reimerdes H, Schaffer M J, Solomon W M, Strait E J 2008 Phys. Rev. Lett. 101195005
[42] Callen J D, Cole A J, Hegna C C 2009 Phys. Plasmas 16082504
[43] Sun Y, Liang Y, Shaing K C, Koslowski H R, Wiegmann C, Zhang T 2010 Phys. Rev. Lett. 105145002
[44] Sun Y, Liang Y, Shaing K, Koslowski H, Wiegmann C, Zhang T 2011 Nucl. Fusion 51053015
[45] Sun Y, Shaing K, Liang Y, Casper T, Loarte A, Shen B, Wan B 2013 Nucl. Fusion 53093010
[46] Shaing K, Ida K, Sabbagh S 2015 Nucl. Fusion 55125001
[47] Li H, Sun Y, Wang L, He K, Shaing K C 2021 Nucl. Fusion 61104002
[48] Yang S, Park J K, Na Y S, Wang Z, Ko W, In Y, Lee J, Lee K, Kim S 2019 Phys. Rev. Lett. 123095001
[49] Sheng H, Lyu B, Sun Y W, Li H H, Li Y Y, Bae C, Liu Y Q, Jin Y F, Mao S F, Yan X T, Xie P C, Ma Q, Wang H H, Shi T H, Zang Q, Qian J P, Jia M N, Chu N, Ye C, Chang Y Y, Wu X M, Zhang Y N, Yang H, Wu M F, Ye M Y, EAST Team 2024 Phys. Plasmas 31032507
[50] Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62042010
[51] Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, Von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 8511E428
[52] Fu S, Yin X, Fu J, Li Y, Wang F, Zhang H, Bae C, Lyu B, Huang Q, Shen Y, Li Y, He L, Jin Y, Gong X 2022 Rev. Sci. Instrum. 93043504
[53] Li G, Wei X, Liu H, Shen J, Jie Y, Lian H, Zeng L, Zou Z, Zhang J, Wang S 2017 Plasma Sci. Technol. 19084003
[54] Wang Y, Zhang T, Liu X, Zhao C, Qu H, Li G, Wu M, Ye K, Wen F, Xiang H, Geng K, Zhong F, Huang J, Han X, Zhang S, Liu S, Nan J, Gao X 2019 Fusion Eng. Des. 148111286
[55] Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 8910H111
[56] Wu M, Wen F, Xiang H, Zhang T, Mao G, Liu Z, Wang Y, Li G, Liu Y, Geng K, Zhong F, Ye K, Huang J, Zhou Z, Han X, Zhang S, Zhuang G, Gao X 2020 JINST 15 P12009
[57] Zhou C, Liu A D, Zhang X H, Hu J Q, Wang M Y, Li H, Lan T, Xie J L, Sun X, Ding W X, Liu W D, Yu C X 2013 Rev. Sci. Instrum. 84103511
[58] Goldston R J 1981 J. Comput. Phys. 4361
[59] Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159157
[60] McDermott R M, Angioni C, Dux R, Fable E, Pütterich T, Ryter F, Salmi A, Tala T, Tardini G, Viezzer E, the ASDEX Upgrade Team 2011 Plasma Phys. Control. Fusion 53124013
[61] Zhang X H, Liu A D, Zhou C, Hu J Q, Wang M Y, Yu C X, Liu W D, Li H, Lan T, Xie J L 2015 Chinese Phys. Lett. 32125201
[62] Conway G D, Schirmer J, Klenge S, Suttrop W, Holzhauer E, the ASDEX Upgrade Team 2004 Plasma Phys. Control. Fusion 46951
[63] Lao L, John H S, Stambaugh R, Pfeiffer W 1985 Nucl. Fusion 251421
[64] Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5973
[65] Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Zang Q, Jia T Q, Ma Q, Gu S, Chu N, He K Y, Jia M N, Wu X M, Xie P C, Sheng H, Yang H, Huang L S, Shen B, Li M H, Qian J P, the EAST Team 2023 Nucl. Fusion 63076004
[66] Cao M, Diamond P H 2022 Plasma Phys. Control. Fusion 64035016
计量
- 文章访问数: 25
- PDF下载量: 0
- 被引次数: 0