搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd-Si非晶合金动力学非均匀性的对称与有序

陈贝 王小云 刘涛 高明 文大东 邓永和 彭平

引用本文:
Citation:

Pd-Si非晶合金动力学非均匀性的对称与有序

陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平

Symmetry and order of the kinetic heterogeneity in Pd-Si amorphous alloys

Chen Bei, Wang Xiao-Yun, Liu Tao, Gao Ming, Wen Da-Dong, Deng Yong-He, Peng Ping
PDF
导出引用
  • 微结构特征和结构演化机制是非晶态材料的研究重点,非晶合金的动力学行为可以揭示非晶合金的形成过程和结构演化机制。本文采用分子动力学模拟方法探讨了Pd原子的浓度对Si原子扩散的阻碍作用及其对体系对称性和有序度的影响。并对与原子扩散、体系的对称性及有序度有关的参数进行了分析,结果表明,增加Pd原子的浓度会导致Si原子的扩散受到更明显的阻碍,表现为Si原子的非高斯参数异常峰的峰值增大和位移的标准差减小。这一现象表明,增加Pd原子浓度会增强了Si原子的牢笼效应,限制Si原子的扩散。此外,Pd原子浓度的增加促进了Pd-Si非晶合金中不饱和键型向饱和键型的转变,且体系的构型熵降低,提高了Pd-Si非晶合金的局域对称性和有序度,使得Si原子处于封闭性更强、对称性更高、结构更加紧凑的团簇结构中,增强了其牢笼效应和局域对称性。本文探讨了Pd原子浓度对Si原子的扩散行为及局域环境的影响机制,为深入理解非晶合金的结构演化提供了新的视角。
    In amorphous alloys, the atomic arrangement exhibits short-range order while lacking long-range order. Despite this absence of long-range order, the local atomic arrangements and interactions can still significantly influence the movement of atoms.The microstructural features and structural evolution mechanisms of amorphous materials are key areas of research, and the dynamics of amorphous alloys can provide insights into their formation processes and structural evolution. The cage effect refers to the phenomenon where atoms are trapped by their surrounding atoms, making it difficult for them to migrate or diffuse freely. This leads to slower diffusion rates and higher viscosities in these materials. Atomic concentration is one of the crucial factors that influence the structure and properties of amorphous materials. Changes in concentration can significantly alter the material’s structure. Adjusting the atomic concentration can lead to differences in the diffusion rates between elements in the amorphous alloys, resulting in a heterogeneous distribution of elements in different regions, which in turn affects the deformation characteristics of amorphous materials.This study aims to investigate the effect of Pd atomic concentration on the diffusion hindrance of Si atoms, as well as its impact on the local symmetry and order of the system. To achieve this objective, molecular dynamics simulations are employed to explore the relaxation process of atoms in Pd-Si amorphous alloys at different Pd atomic concentrations, and parameters related to atomic diffusion, displacement distribution, system symmetry, and order are analyzed. The results show that increasing the concentration of Pd atoms leads to a more pronounced hindrance in the diffusion of Si atoms, manifested by an increase in the abnormal peak values of the non-Gaussian parameters and a decrease in the standard deviation of the displacements. This indicates that a higher Pd atom concentration enhances the cage effect of Si atoms, thus restricting their diffusion. Additionally, the increase in Pd concentration promotes the transition from unsaturated to saturated bond types in the Pd-Si amorphous alloys, and also leads to a decrease in the system's configurational entropy. This consequently enhances the local symmetry and order of the Pd-Si amorphous alloys, resulting in Si atoms locate at the center of more closed, higher-symmetry, and more compact cluster structures, which strengthens their cage effect and local symmetry. This study investigates the impact of Pd atom concentration on the diffusion behavior and local environment of Si atoms, providing a new insight into the structural evolution of amorphous alloys.
  • [1]

    Qiao J C,Pelletier J M 2014 J Mater Sci Technol 30 523

    [2]

    Abrosimova G E 2011 Phys-Usp+ 54 1227

    [3]

    Cornet A, Garbarino G, Zontone F, Chushkin Y, Jacobs J, Pineda E, Deschamps T, Li S, Ronca A, Shen J, Morard G, Neuber N, Frey M, Busch R, Gallino I, Mezouar M, Vaughan G, Ruta B 2023 Acta Mater 255 119065

    [4]

    Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater 239 118254

    [5]

    Chen B, Deng Y H, Qi Q H, Gao M, Wen D D, Wang X Y, Peng P 2024 Acta Phys Sin 73 026101

    [6]

    Gao M, Wen D D, Cao G Q, Zhang Y W, Deng Y H, Hu J H 2023 Appl Surf Sci 640 1158286.

    [7]

    Faruqa M, Villesuzannea, A, g Shao G 2018 J Non-Cryst Solids 487 72

    [8]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater Sci.145 101311

    [9]

    Deng Y H, Chen B, Qi Q H, Li B B, Gao Mg, Wen D D, Wang X Y, Peng P 2024 Chin Phys B 33 047102.

    [10]

    Raya I, Chupradit S, Kadhim M M, Mahmoud M Z, Jalil A T, Surendar A, Ghafel S T, Mustafa Y F, Bochvar A N 2022 Chinese. Phys. B 31 016401

    [11]

    Jiang J, Sun W F, Luo N 2022 Mater. Today Commun. 31 103861

    [12]

    Laws K J, Granata D, Löffler J F 2016 Acta Mater 103 735

    [13]

    Rubén Fernández, Wilson Carrasco, Alejandro Zúñiga 2010 J Non-Cryst Solids 365 1665

    [14]

    Chen Y X, Pan S P, Lu X Q, Kang H, Zhang Y H, Zhang M, Feng S D, Ngai K L, Wang L M 2022 J Non-Cryst Solids 590 121699

    [15]

    Gao Q, Jiang Y, Liu Z, Zhang H, Jiang C, Zhang X, Li H 2020 Materials Science and Engineering: A 779 139139

    [16]

    Liu C, Maaß R 2018 Adv Funct Mater 28 1800388

    [17]

    Pourasghar A, Kamarian S 2015 J Vib Control 21 2499

    [18]

    Celtek M, Sengul S, Domekeli U, Guder V 2023 J. Mol. Liq. 372 121163

    [19]

    Nandam S H, Adjaoud O, Schwaiger R, Ivanisenko Y, Chellali M R, Wang D, Albe K, Hahn H 2020 Acta Mater 193 252

    [20]

    Verlet L 1967 Phys. Rev. 159 20

    [21]

    Available at https:\\www.google.com/site/eampotentials/Table/PdSi

    [22]

    Priezjev N V 2020 Comp Mater Sci 174 109477

    [23]

    Moon J 2021 J. Appl. Phys.130 055101

    [24]

    Sun L, Peng C, Cheng Y, Song K, Li X, Wang L 2021 J Non-Cryst Solids 563 120814

    [25]

    Li Y G, Suleiman K, Xu Y 2024 Phys. Rev. E 109 014139

    [26]

    Wen T Q, Sun Y, Ye B L, Tang L, Yang Z J, Ho K M, Wang C Z, Wang N 2018 J. Appl. Phys.123 045108

    [27]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos Mag 98 2861

    [28]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275

    [29]

    Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, Liu R P 2018 Mater Design 158 248

    [30]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J Non-Cryst Solids 355 541

    [31]

    Zhou Y, Liang Y C, Zhou L L, Mo Y F, Wu R L, Tian Z A 2023 J Non-Cryst Solids 612 1222354

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20232026
    [2] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.73.20241170
    [3] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联. 物理学报, doi: 10.7498/aps.72.20231153
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202116
    [5] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, doi: 10.7498/aps.70.20201407
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191069
    [7] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [8] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, doi: 10.7498/aps.68.20181530
    [9] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, doi: 10.7498/aps.66.106102
    [10] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, doi: 10.7498/aps.66.136102
    [11] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.245202
    [12] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, doi: 10.7498/aps.62.165203
    [13] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, doi: 10.7498/aps.60.026101
    [14] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.095203
    [15] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.045209
    [16] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.7225
    [17] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [18] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, doi: 10.7498/aps.53.2497
    [19] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, doi: 10.7498/aps.52.2254
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-13

/

返回文章
返回