-
反式钙钛矿太阳电池(perovskite solar cell, PSC)是当前钙钛矿电池领域的重点发展方向, 其中, NiO作为一种无机空穴传输材料, 具有良好的化学稳定性, 被广泛用于制备反式结构器件. 然而, 由于NiO的电导率和空穴迁移率相对较低且与钙钛矿薄膜的界面接触较差, 使其在实现高性能反式PSC方面存在困难. 为克服上述问题, 本工作采用乙酸钾为钾源, 通过在NiO纳米晶中掺入钾离子(K+)有效提升了NiO的电导率和空穴迁移率. 此外, 掺杂K+后, NiO与钙钛矿薄膜之间具有更好的界面接触, 光生电荷的分离更有利. 实验结果表明, 最优的K+掺杂摩尔分数为3%, 经过K+掺杂后电池效率从15.15%提高到16.75%, 这主要得益于短路电流密度和填充因子的提升.Perovskite solar cells (PSCs) with inverted structures have received significant attention in the field of photovoltaics. NiO is one of the commonly explored hole transport materials (HTMs) because of its excellent chemical stability in comparison with organic materials. Pure NiO is an insulator, but the presence of nickel vacancies can lead to the formation of Ni3+ ions, resulting in p-type semiconductor properties. However, the low conductivity and poor interfacial contact between NiO and perovskite thin films still pose challenges in achieving high-performance inverted PSCs. To solve these problems, potassium acetate is used as a potassium source for a nickel precursor, and therefore potassium ions (K+) are doped into NiO nanocrystals. The introduction of K+ into NiO leads to the formation of Ni3+ ions, thereby increasing the conductivity and hole mobility of NiO. Furthermore, K+-doped NiO exhibits better interface contact with the perovskite film, facilitating the efficient separation of photo-generated charges and showing a strong photoluminescence quenching effect. Experimental results demonstrate that the optimal concentration of K+ doping is 3%, and the PSCs prepared with K+-doped NiO exhibit a significant increase in efficiency, from 15.15% to 16.75%, which is attributed primarily to the improvements in the short-circuit current density and fill factor. These improvements highlight the importance of enhanced conductivity and better interfacial contact achieved through K+ doping for charge carrier collection, effectively addressing the limitations of NiO in inverted PSCs.
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[2] Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar
[3] Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5
[4] Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6
[5] Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar
[6] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[7] Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press
[8] Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar
[9] Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar
[10] Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar
[11] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar
[12] Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar
[13] Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar
[14] Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar
[15] Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar
[16] Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar
[17] Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar
[18] Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar
[19] Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar
[20] Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar
[21] Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar
[22] Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar
[23] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar
[24] Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar
[25] Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar
[26] Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar
-
图 2 K+掺杂前后电池结构及光伏特性变化 (a)反式PSC结构示意图; (b)能级图; (c)不同浓度K+掺杂NiO的电池最佳J-V曲线; (d) 基于NiO和3% K+掺杂NiO (K:NiO)的电池正反扫J-V曲线; (e)电池的外量子效率(EQE)曲线; (f) 基于K:NiO空穴传输层的电池最大功率点追踪曲线
Fig. 2. Changes in device structure and photovoltaic characteristics before and after K+ doping: (a) Schematic device structure of inverted PSC; (b) energy level diagram of inverted PSC; (c) J-V curves of PSCs using NiO before and after K+ doping with different molar ratios; (d) J-V curves of PSCs using NiO and 3% K+-doped NiO (K:NiO) scanned at forward and reverse scan; (e) external quantum efficiency (EQE) spectra along with the integrated photocurrent density for PSCs; (f) maximum power point tracking of PSC based on K:NiO HTL.
图 4 NiO和3% K+掺杂NiO的XPS谱图, 其中(a), (b) K 2p, (c), (d) Ni 2p和(e), (f) O 1s; 不同浓度K+掺杂的NiO XPS谱图, 其中(g) K 2p和(h) Ni 2p; (i)不同浓度K+掺杂NiO的Ni3+/Ni2+比值变化曲线
Fig. 4. XPS spectra of (a), (b) K 2p, (c), (d) Ni 2p, (e), (f) O 1s for NiO and 3% K+-doped NiO; XPS of (g) K 2p and (h) Ni 2p of K doped NiO with various molar ratio; (i) ratio of Ni3+/Ni2+ of NiO or K doped NiO with various molar ratio.
图 5 NiO和掺杂3% K+的NiO薄膜的电学性能表征 (a) 暗态I-V曲线; (b) SCLC曲线; 其中NiO厚度为20 nm, 器件结构为FTO/HTL(NiO or K:NiO)/钙钛矿/spiro-MeOTAD/Au
Fig. 5. Electrical properties of NiO thin films with and without K+ doping: (a) Dark I-V and (b) SCLC curves of NiO films with and without K+ doping. The thickness of NiO is 20 nm, and the device structure is FTO/HTL (NiO or K:NiO)/perovskite/spiro-MeOTAD/Au.
图 6 K+掺杂对MAPbI3薄膜的影响 (a) NiO和(b) 3% K+掺杂NiO薄膜上的MAPbI3表面形貌图; (c)沉积在NiO和K:NiO基底上的MAPbI3的粒径分布; K+掺杂前后MAPbI3薄膜的(d)吸光度和(e) XRD谱图
Fig. 6. Influence of K+ doping on perovskite films: (a), (b) SEM images of MAPbI3 deposited on (a) NiO and (b) 3% K+-doped NiO films; (c) grain size distribution of MAPbI3 deposited on NiO and K:NiO substrates; (d) absorbance and (e) XRD patterns of MAPbI3 layers.
表 1 不同浓度K+掺杂NiO的电池最佳光伏特性参数
Table 1. Photovoltaic parameters of the best-performing PSCs using NiO before and after K+ ions doping with different molar ratios.
K+/% JSC/(mA·cm–2) VOC/V FF PCE/% 0 19.62 1.00 0.77 15.15 1 20.61 0.99 0.78 15.98 3 20.78 1.01 0.79 16.75 5 19.81 1.00 0.78 15.47 7 19.87 1.02 0.75 15.25 -
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[2] Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar
[3] Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5
[4] Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6
[5] Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar
[6] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[7] Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press
[8] Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar
[9] Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar
[10] Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar
[11] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar
[12] Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar
[13] Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar
[14] Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar
[15] Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar
[16] Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar
[17] Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar
[18] Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar
[19] Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar
[20] Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar
[21] Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar
[22] Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar
[23] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar
[24] Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar
[25] Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar
[26] Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar
计量
- 文章访问数: 513
- PDF下载量: 19
- 被引次数: 0