-
反式钙钛矿太阳电池(perovskite solar cell,PSC)是当前钙钛矿电池领域的重点发展方向,其中,NiO作为一种无机空穴传输材料,具有良好的化学稳定性,被广泛用于制备反式结构器件。然而,由于NiO的电导率和空穴迁移率相对较低且与钙钛矿薄膜的界面接触较差,使其在实现高性能反式PSC方面存在困难。为克服上述问题,该工作采用乙酸钾为钾源,通过在NiO纳米晶中掺入钾离子(K+)有效提升了NiO的电导率和空穴迁移率。此外,掺杂K+后,NiO与钙钛矿薄膜之间具有更好的界面接触,光生电荷的分离更有利。实验结果表明,最优的K+掺杂浓度为3 mol%,经过K+掺杂后电池效率从15.15%提高到16.75%,这主要得益于短路电流密度和填充因子的提升。Perovskite solar cells (PSCs) with inverted structures have gained significant attentions in the field of photovoltaics. NiO is one of the commonly explored hole transport materials (HTMs) due to its excellent chemical stability compared to organic materials. Pure NiO is an insulator, but the presence of nickel vacancies introduces the formation of Ni3+ ions that give rise to p-type semiconductor properties. However, the low conductivity and poor interfacial contact between NiO and perovskite thin films still pose challenges in achieving high-performance inverted PSCs. To overcome these issues, this study used potassium acetate as a potassium source into nickel precursor and doped potassium ions (K+) into NiO nanocrystals. The introduction of K+ in NiO induces the formation of Ni3+ ions, thereby increasing the conductivity and hole mobility of NiO. Furthermore, K+-doped NiO demonstrated better interface contact with the perovskite film, facilitating the efficient separation of photo-generated charges with a strong photoluminescence quenching effect. Experimental results demonstrated that the optimal concentration of K+ doping is 3 mol%, and the PSCs prepared with K+-doped NiO exhibited a significant increase in efficiency, from 15.15% to 16.75%, primarily attributed to improvements in the short-circuit current density and fill factor. These improvements highlight the importance of enhanced conductivity and better interfacial contact achieved through K+ doping for charge carrier collection, effectively addressing the limitations of NiO in inverted PSCs.
-
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
[2] Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665
[3] Li S, Xiao Y, Su R, Xu W, Luo D, Huang P, Dai L, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J, Habib I, Dasgupta A, Guo D, Boeije Y, Zelewski S J, Lu Z, Huang T, Li Q, Wang J, Yan H, Chen H hsin, Li C, Lewis B A I, Wang D, Wu J, Zhao L, Han B, Wang J, Herz L M, Durrant J R, Novoselov K S, Lu Z hong, Gong Q, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi:10.1038/s41586-024-08159-5
[4] Wang Y, Lin R, Liu C, Wang X, Chosy C, Haruta Y, Bui A D, Li M, Sun H, Zheng X, Luo H, Wu P, Gao H, Sun W, Nie Y, Zhu H, Zhou K, Nguyen H T, Luo X, Li L, Xiao C, Saidaminov M I, Stranks S D, Zhang L, Tan H 2024 Nature Doi: 10.1038/s41586-024-08158-6
[5] Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148
[6] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759
[7] Barsoum M W Inst. Phys. Publ., 2003
[8] Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339
[9] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L 2015 Science. 350 944
[10] Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874
[11] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722
[12] Yu S, Xiong Z, Zhou H, Zhang Q, Wang Z, Ma F, Qu Z, Zhao Y, Chu X, Zhang X, You J 2023 Science. 382 1399
[13] Li L, Wei M, Carnevali V, Zeng H, Zeng M, Liu R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y, Li X 2024 Adv. Mater. 36 2303869
[14] Bai Y, Chen H, Xiao S, Xue Q, Zhang T, Zhu Z, Li Q, Hu C, Yang Y, Hu Z, Huang F, Wong K S, Yip H L, Yang S 2016 Adv. Funct. Mater. 26 2950
[15] Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616
[16] Zhao X, Zhou J, Wang S, Tan L, Li M, Li H, Yi C 2021 ACS Appl. Energy Mater. 4 6903
[17] Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813
[18] Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993
[19] Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159
[20] Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275
[21] Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103
[22] Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732
[23] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771
[24] Liu S, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528
[25] Zhao X, Qiu Y, Wang M, Wu D, Yue X, Yan H, Fan B, Du S, Yang Y, Yang Y, Li D, Cui P, Huang H, Li Y, Park N G, Li M 2024 ACS Energy Lett. 9 2659
[26] Teo S, Guo Z, Xu Z, Zhang C, Kamata Y, Hayase S, Ma T 2019 ChemSusChem 12 518
计量
- 文章访问数: 35
- PDF下载量: 1
- 被引次数: 0