搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反式钙钛矿太阳电池中钾离子掺杂NiO提升电荷收集能力研究

赵兴 李丹妮 李美成

引用本文:
Citation:

反式钙钛矿太阳电池中钾离子掺杂NiO提升电荷收集能力研究

赵兴, 李丹妮, 李美成
cstr: 32037.14.aps.73.20240974

Enhancement of charge collection capability by potassium-doped NiO in inverted planar perovskite solar cells

Zhao Xing, Li Dan-Ni, Li Mei-Cheng
cstr: 32037.14.aps.73.20240974
PDF
HTML
导出引用
  • 反式钙钛矿太阳电池(perovskite solar cell, PSC)是当前钙钛矿电池领域的重点发展方向, 其中, NiO作为一种无机空穴传输材料, 具有良好的化学稳定性, 被广泛用于制备反式结构器件. 然而, 由于NiO的电导率和空穴迁移率相对较低且与钙钛矿薄膜的界面接触较差, 使其在实现高性能反式PSC方面存在困难. 为克服上述问题, 本工作采用乙酸钾为钾源, 通过在NiO纳米晶中掺入钾离子(K+)有效提升了NiO的电导率和空穴迁移率. 此外, 掺杂K+后, NiO与钙钛矿薄膜之间具有更好的界面接触, 光生电荷的分离更有利. 实验结果表明, 最优的K+掺杂摩尔分数为3%, 经过K+掺杂后电池效率从15.15%提高到16.75%, 这主要得益于短路电流密度和填充因子的提升.
    Perovskite solar cells (PSCs) with inverted structures have received significant attention in the field of photovoltaics. NiO is one of the commonly explored hole transport materials (HTMs) because of its excellent chemical stability in comparison with organic materials. Pure NiO is an insulator, but the presence of nickel vacancies can lead to the formation of Ni3+ ions, resulting in p-type semiconductor properties. However, the low conductivity and poor interfacial contact between NiO and perovskite thin films still pose challenges in achieving high-performance inverted PSCs. To solve these problems, potassium acetate is used as a potassium source for a nickel precursor, and therefore potassium ions (K+) are doped into NiO nanocrystals. The introduction of K+ into NiO leads to the formation of Ni3+ ions, thereby increasing the conductivity and hole mobility of NiO. Furthermore, K+-doped NiO exhibits better interface contact with the perovskite film, facilitating the efficient separation of photo-generated charges and showing a strong photoluminescence quenching effect. Experimental results demonstrate that the optimal concentration of K+ doping is 3%, and the PSCs prepared with K+-doped NiO exhibit a significant increase in efficiency, from 15.15% to 16.75%, which is attributed primarily to the improvements in the short-circuit current density and fill factor. These improvements highlight the importance of enhanced conductivity and better interfacial contact achieved through K+ doping for charge carrier collection, effectively addressing the limitations of NiO in inverted PSCs.
      通信作者: 李美成, mcli@ncepu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 22409061, 52232008, 51972110, 52102245, 52072121)、北京市自然科学基金(批准号: 2222076, 2222077)、华能集团科技项目(批准号: HNKJ20-H88)和中央高校基本科研业务费 (批准号: 2023MS047, 2023MS042)资助的课题.
      Corresponding author: Li Mei-Cheng, mcli@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22409061, 52232008, 51972110, 52102245, 52072121), the Beijing Natural Science Foundation, China (Grant Nos. 2222076, 2222077), the Huaneng Group Headquarters Science and Technology Project, China (Grant No. HNKJ20-H88), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2023MS047, 2023MS042).
    [1]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [2]

    Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar

    [3]

    Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5

    [4]

    Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6

    [5]

    Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar

    [6]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [7]

    Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press

    [8]

    Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar

    [9]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [10]

    Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar

    [11]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [12]

    Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar

    [13]

    Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar

    [14]

    Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar

    [15]

    Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar

    [16]

    Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar

    [17]

    Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar

    [18]

    Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar

    [19]

    Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar

    [20]

    Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar

    [21]

    Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar

    [22]

    Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar

    [23]

    Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar

    [24]

    Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar

    [25]

    Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar

    [26]

    Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar

  • 图 1  不同浓度K+掺杂NiO的电池光伏特性参数统计图 (a) JSC; (b) VOC; (c) FF; (d) PCE

    Fig. 1.  Statistical photovoltaic parameters of PSCs with different concentrations of K+ ions doping into NiO: (a) JSC; (b) VOC; (c) FF; (d) PCE.

    图 2  K+掺杂前后电池结构及光伏特性变化 (a)反式PSC结构示意图; (b)能级图; (c)不同浓度K+掺杂NiO的电池最佳J-V曲线; (d) 基于NiO和3% K+掺杂NiO (K:NiO)的电池正反扫J-V曲线; (e)电池的外量子效率(EQE)曲线; (f) 基于K:NiO空穴传输层的电池最大功率点追踪曲线

    Fig. 2.  Changes in device structure and photovoltaic characteristics before and after K+ doping: (a) Schematic device structure of inverted PSC; (b) energy level diagram of inverted PSC; (c) J-V curves of PSCs using NiO before and after K+ doping with different molar ratios; (d) J-V curves of PSCs using NiO and 3% K+-doped NiO (K:NiO) scanned at forward and reverse scan; (e) external quantum efficiency (EQE) spectra along with the integrated photocurrent density for PSCs; (f) maximum power point tracking of PSC based on K:NiO HTL.

    图 3  K+掺杂前后NiO的光学及晶体结构变化, 即玻璃上NiO和3% K+掺杂NiO薄膜的(a)透射率和(b) GIXRD图谱

    Fig. 3.  Changes in optical and crystal structure of NiO films before and after K+ doping: (a) Transmittance and (b) GIXRD of NiO and 3% K+-doped NiO films deposited on glass.

    图 4  NiO和3% K+掺杂NiO的XPS谱图, 其中(a), (b) K 2p, (c), (d) Ni 2p和(e), (f) O 1s; 不同浓度K+掺杂的NiO XPS谱图, 其中(g) K 2p和(h) Ni 2p; (i)不同浓度K+掺杂NiO的Ni3+/Ni2+比值变化曲线

    Fig. 4.  XPS spectra of (a), (b) K 2p, (c), (d) Ni 2p, (e), (f) O 1s for NiO and 3% K+-doped NiO; XPS of (g) K 2p and (h) Ni 2p of K doped NiO with various molar ratio; (i) ratio of Ni3+/Ni2+ of NiO or K doped NiO with various molar ratio.

    图 5  NiO和掺杂3% K+的NiO薄膜的电学性能表征 (a) 暗态I-V曲线; (b) SCLC曲线; 其中NiO厚度为20 nm, 器件结构为FTO/HTL(NiO or K:NiO)/钙钛矿/spiro-MeOTAD/Au

    Fig. 5.  Electrical properties of NiO thin films with and without K+ doping: (a) Dark I-V and (b) SCLC curves of NiO films with and without K+ doping. The thickness of NiO is 20 nm, and the device structure is FTO/HTL (NiO or K:NiO)/perovskite/spiro-MeOTAD/Au.

    图 6  K+掺杂对MAPbI3薄膜的影响 (a) NiO和(b) 3% K+掺杂NiO薄膜上的MAPbI3表面形貌图; (c)沉积在NiO和K:NiO基底上的MAPbI3的粒径分布; K+掺杂前后MAPbI3薄膜的(d)吸光度和(e) XRD谱图

    Fig. 6.  Influence of K+ doping on perovskite films: (a), (b) SEM images of MAPbI3 deposited on (a) NiO and (b) 3% K+-doped NiO films; (c) grain size distribution of MAPbI3 deposited on NiO and K:NiO substrates; (d) absorbance and (e) XRD patterns of MAPbI3 layers.

    图 7  MAPbI3 沉积在未掺杂NiO和3% K+掺杂NiO薄膜上的(a)稳态光致发光光谱(SSPL)和(b)时间分辨光致发光光谱(TRPL)光谱

    Fig. 7.  (a) Steady-state photoluminescence (SSPL) and (b) time-resolved photoluminescence (TRPL) of MAPbI3 deposited on undoped NiO and 3% K+ doped NiO films formed on bare glass.

    表 1  不同浓度K+掺杂NiO的电池最佳光伏特性参数

    Table 1.  Photovoltaic parameters of the best-performing PSCs using NiO before and after K+ ions doping with different molar ratios.

    K+/% JSC/(mA·cm–2) VOC/V FF PCE/%
    0 19.62 1.00 0.77 15.15
    1 20.61 0.99 0.78 15.98
    3 20.78 1.01 0.79 16.75
    5 19.81 1.00 0.78 15.47
    7 19.87 1.02 0.75 15.25
    下载: 导出CSV
  • [1]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [2]

    Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar

    [3]

    Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5

    [4]

    Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6

    [5]

    Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar

    [6]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [7]

    Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press

    [8]

    Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar

    [9]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [10]

    Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar

    [11]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [12]

    Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar

    [13]

    Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar

    [14]

    Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar

    [15]

    Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar

    [16]

    Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar

    [17]

    Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar

    [18]

    Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar

    [19]

    Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar

    [20]

    Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar

    [21]

    Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar

    [22]

    Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar

    [23]

    Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar

    [24]

    Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar

    [25]

    Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar

    [26]

    Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] 江新帅, 罗尹虹, 赵雯, 张凤祁, 王坦. 阱接触对28 nm SRAM单粒子多位翻转的影响. 物理学报, 2023, 72(3): 036101. doi: 10.7498/aps.72.20221742
    [5] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能. 物理学报, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术. 物理学报, 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [10] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [11] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [13] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [14] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽. 选择性埋氧层上硅器件的单粒子瞬态响应的温度相关性. 物理学报, 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [15] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [16] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [17] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [18] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真. 物理学报, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [19] 毕津顺, 刘刚, 罗家俊, 韩郑生. 22 nm工艺超薄体全耗尽绝缘体上硅晶体管单粒子瞬态效应研究. 物理学报, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [20] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟. 物理学报, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
计量
  • 文章访问数:  513
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-13
  • 修回日期:  2024-11-21
  • 上网日期:  2024-11-25
  • 刊出日期:  2024-12-20

/

返回文章
返回