搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流对部分相干双曲余弦高斯光束的瑞利区间的影响

季小玲

引用本文:
Citation:

湍流对部分相干双曲余弦高斯光束的瑞利区间的影响

季小玲

Influence of turbulence on the Rayleigh range of partially coherent cosh-Gaussian beams

Ji Xiao-Ling
PDF
导出引用
  • 推导出了部分相干双曲余弦高斯光束在自由空间和湍流大气中传输瑞利区间的解析公式,并研究了湍流对光束瑞利区间的影响.研究表明,部分相干双曲余弦高斯光束的瑞利区间由湍流强度和光束参数等因数共同确定.湍流使得光束的瑞利区间缩短,并且湍流越强瑞利区间越短.在自由空间中,瑞利区间随光束相干参数 α 、光束参数 β 和高斯束宽 w 0的增大以及波长 λ 的减小而增大.但是, α,β 和 w 0越小以及 λ 越大,瑞利区间受湍流的影响越小.并且,当
    The analytical expressions for the Rayleigh range of partially coherent cosh-Gaussian beams both in free space and in atmospheric turbulence are derived. The influence of turbulence on the Rayleigh range of partially coherent cosh-Gaussian beams is studied. It is shown that the Rayleigh range of partially coherent cosh-Gaussian beams depends on the strength of turbulence and the beam parameters. The Rayleigh range decreases due to turbulence. The stronger the turbulence, the shorter the Rayleigh range is. In free space, the Rayleigh range increases with the increase of beam coherence parameter α , beam parameter β and Gaussian waist width w 0, and the decrease of wave length λ. However, the Rayleigh range is less sensitive to turbulence with α , β and w 0 decreasing and λ increasing. Furthermore, the influence of turbulence can be ignored when α , β and w 0 are small enough and λ is large enough.
    • 基金项目: 国家自然科学基金(批准号:60778048)和中国科学院大气成分与光学重点实验室开放课题基金(批准号:JJ-10-08)资助的课题.
    [1]

    Siegman A E 1986 Lasers (Mill Valley, CA: University Science Books)

    [2]

    Gbur G, Wolf E 2001 Opt. Commun. 199 295

    [3]

    Ji X L 2009 Chin. Phys. Lett. 26 1242010

    [4]

    Li X Q, Ji X L, Yang F 2010 Opt. Laser Technol. 42 604

    [5]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham, Washington:SPIE Press)

    [6]

    Shirai T, Dogariu A, Wolf E 2003 J. Opt. Soc. Am. A 20 1094

    [7]

    Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves Random Media 14 513

    [8]

    Cai Y J, He S 2006 Appl. Phys. Lett. 89 041117

    [9]

    Lu W, Liu L, Sun J, Yang Q, Zhu Y 2007 Opt. Commun. 271 1

    [10]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王 涛、蒲继雄 2007 物理学报 56 6754]

    [11]

    Korotkova O, Wolf E 2007 Opt. Lett. 32 2137

    [12]

    Dan Y, Zhang B 2009 Opt. Lett. 34 563

    [13]

    Mao H, Zhao D M 2010 Opt. Express 18 1741

    [14]

    Ji X L, Pu Z C 2010 Chin. Phys. B 19 029201

    [15]

    Zhou P, Liu Z J, Xu X J and Chu X X 2010 Chin. Phys. B 19 024205

    [16]

    Chen X W, Tang M Y, Ji X L 2008 Acta Phys. Sin. 57 2607 (in Chinese) [陈晓文、汤明玥、 季小玲 2008 物理学报 57 2607]

    [17]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文、季小玲 2009 物理学报 58 2435]

    [18]

    Zheng W W, Wang L Q, Xu J P, Wang L G 2009 Acta Phys. Sin. 58 5098 (in Chinese) [郑巍巍、王丽琴、许静平、王立刚 2009 物理学报 58 5098]

    [19]

    Chen X W, Ji X L 2010 Chin. Phys. B 19 024203

    [20]

    Ji X L, Eyyuboglu H T, Baykal Y 2010 Opt. Express 18 6922

    [21]

    Casperson L W, Hall D G, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [22]

    Zahid M, Zubairy M S 1989 Opt. Commun. 70 361

    [23]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge Uinversity Press)

    [24]

    Siegman A E 1990 Proc. SPIE 1224 2

    [25]

    Ji X L, Li X Q 2010 J. Opt. 12 035403

  • [1]

    Siegman A E 1986 Lasers (Mill Valley, CA: University Science Books)

    [2]

    Gbur G, Wolf E 2001 Opt. Commun. 199 295

    [3]

    Ji X L 2009 Chin. Phys. Lett. 26 1242010

    [4]

    Li X Q, Ji X L, Yang F 2010 Opt. Laser Technol. 42 604

    [5]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham, Washington:SPIE Press)

    [6]

    Shirai T, Dogariu A, Wolf E 2003 J. Opt. Soc. Am. A 20 1094

    [7]

    Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves Random Media 14 513

    [8]

    Cai Y J, He S 2006 Appl. Phys. Lett. 89 041117

    [9]

    Lu W, Liu L, Sun J, Yang Q, Zhu Y 2007 Opt. Commun. 271 1

    [10]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王 涛、蒲继雄 2007 物理学报 56 6754]

    [11]

    Korotkova O, Wolf E 2007 Opt. Lett. 32 2137

    [12]

    Dan Y, Zhang B 2009 Opt. Lett. 34 563

    [13]

    Mao H, Zhao D M 2010 Opt. Express 18 1741

    [14]

    Ji X L, Pu Z C 2010 Chin. Phys. B 19 029201

    [15]

    Zhou P, Liu Z J, Xu X J and Chu X X 2010 Chin. Phys. B 19 024205

    [16]

    Chen X W, Tang M Y, Ji X L 2008 Acta Phys. Sin. 57 2607 (in Chinese) [陈晓文、汤明玥、 季小玲 2008 物理学报 57 2607]

    [17]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文、季小玲 2009 物理学报 58 2435]

    [18]

    Zheng W W, Wang L Q, Xu J P, Wang L G 2009 Acta Phys. Sin. 58 5098 (in Chinese) [郑巍巍、王丽琴、许静平、王立刚 2009 物理学报 58 5098]

    [19]

    Chen X W, Ji X L 2010 Chin. Phys. B 19 024203

    [20]

    Ji X L, Eyyuboglu H T, Baykal Y 2010 Opt. Express 18 6922

    [21]

    Casperson L W, Hall D G, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [22]

    Zahid M, Zubairy M S 1989 Opt. Commun. 70 361

    [23]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge Uinversity Press)

    [24]

    Siegman A E 1990 Proc. SPIE 1224 2

    [25]

    Ji X L, Li X Q 2010 J. Opt. 12 035403

计量
  • 文章访问数:  6187
  • PDF下载量:  972
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-02
  • 修回日期:  2010-09-13
  • 刊出日期:  2011-03-05

湍流对部分相干双曲余弦高斯光束的瑞利区间的影响

  • 1. 四川师范大学物理系,成都 610068
    基金项目: 国家自然科学基金(批准号:60778048)和中国科学院大气成分与光学重点实验室开放课题基金(批准号:JJ-10-08)资助的课题.

摘要: 推导出了部分相干双曲余弦高斯光束在自由空间和湍流大气中传输瑞利区间的解析公式,并研究了湍流对光束瑞利区间的影响.研究表明,部分相干双曲余弦高斯光束的瑞利区间由湍流强度和光束参数等因数共同确定.湍流使得光束的瑞利区间缩短,并且湍流越强瑞利区间越短.在自由空间中,瑞利区间随光束相干参数 α 、光束参数 β 和高斯束宽 w 0的增大以及波长 λ 的减小而增大.但是, α,β 和 w 0越小以及 λ 越大,瑞利区间受湍流的影响越小.并且,当

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回