搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的新混沌信号及其在图像加密中的应用

赵智鹏 周双 王兴元

引用本文:
Citation:

基于深度学习的新混沌信号及其在图像加密中的应用

赵智鹏, 周双, 王兴元

A new chaotic signal based on deep learning and its application in image encryption

Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan
PDF
HTML
导出引用
  • 为提高单一混沌系统图像加密的安全性, 本文提出了基于深度学习的图像加密算法. 首先, 利用超混沌Lorenz系统产生混沌序列. 其次, 利用长短期记忆人工神经网络(long-short term memory, LSTM)复杂的网络结构模拟混沌特征构造新的混沌信号. 然后, 利用最大Lyapunov指数, 0-1测试, 功率谱分析、相图以及NIST测试对新信号的动力学特征进行分析. 最后, 将新信号应用到图像加密中. 由于该方法生成的新信号不同于原有混沌信号, 而且加密系统具有很高的复杂结构和非线性特征, 故很难被攻击者攻击. 仿真实验结果表明, 本文提出的图像加密算法相比其他一些传统方法具有更高的安全性, 能够抵抗常见的攻击方式.
    To improve the security of image encryption in singular chaotic systems, an encryption algorithm based on deep-learning is proposed in this paper. To begin with, the chaos sequence is generated by using a hyperchaotic Lorenz system, prior to creating new chaotic signals based on chaotic characteristics obtained from he simulations of the powerful complex network structure of long-short term memory artificial neural network (LSTM-ANN). Then, dynamic characteristics of the new signals are analyzed with the largest Lyapunov exponent, 0-1 test, power spectral analysis, phase diagrams and NIST test. In the end, the new signals are applied to image encryption, the results of which verify the expected increased difficulty in attacking the encrypted system. This is attributable to the differences of the new signals generated using the proposed method from the original chaotic signals, as well as arises from the high complexity and nonlinearity of the system. Considering its ability to withstand common encryption attacks, it is hence reasonable to conclude that the proposed method exhibits higher safety and security than other traditional methods.
      通信作者: 周双, zhoushuang@cqnu.edu.cn ; 王兴元, xywang@dlmu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61672124)、国家密码学发展“十三五”密码理论基金(批准号: MMJJ20170203)、辽宁省科技创新领军人才基金(批准号: XLYC1802013)、辽宁省重点研发计划(批准号: 2019020105-JH2/103)、济南市“高校20条”资助项目引进创新团队计划(批准号: 2019GXRC031)和重庆市教委科学技术研究项目(批准号: KJQN201900529)资助的课题
      Corresponding author: Zhou Shuang, zhoushuang@cqnu.edu.cn ; Wang Xing-Yuan, xywang@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61672124), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund, China (Grant No. MMJJ20170203), the Liaoning Province Science and Technology Innovation Leading Talents Program Project, China (Grant No. XLYC1802013), the Key R&D Projects of Liaoning Province, China (Grant No. 2019020105-JH2/103), the Jinan City’ 20 Universities’ Funding Projects-Introducing Innovation Team Program, China (Grant No. 2019GXRC031), and the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201900529)
    [1]

    Wang X Y, Teng L, Qin X 2012 Signal Pro. 92 1101Google Scholar

    [2]

    Liu W H, Sun K H, Zhu C X 2016 Optics Lasers Eng. 84 26Google Scholar

    [3]

    Wu X J, Kan H C, Kurths J 2015 Appl. Soft Comput. 37 24Google Scholar

    [4]

    Hua Z Y, Zhou Y C, Pun C M, Chen C. L. P 2015 Inf. Sci. 297 80Google Scholar

    [5]

    郑洪英, 李琳, 肖迪 2021 信息网络安全 21 10Google Scholar

    Zheng H Y, Li L, Xiao D 2021 Net Inf. Security 21 10Google Scholar

    [6]

    Dharavathu K, Mosa A 2020 Int. J. Commun. Syst. 33 e4369

    [7]

    Zhao J F, Wang S Y, Chang Y X, Li X F 2015 Nonlinear Dyn. 80 1721Google Scholar

    [8]

    Khan M 2015 Nonlinear Dyn. 82 527Google Scholar

    [9]

    Chai X L, Gan Z H, Yuan K, Yang L Chen Y R 2017 Chin. Phys. B 26 020504Google Scholar

    [10]

    Chai X L, Fu J Y, Zhang J T, Han D J, Gan Z H 2021 Neural Comput. Appl. 33 10271Google Scholar

    [11]

    Ran Q W, Yuan L, Zhao T Y 2015 Opt. Commun. 348 43Google Scholar

    [12]

    Kaur M, Kumar V 2018 Int. J. Bifurcat. Chaos 28 1850132Google Scholar

    [13]

    Yasser I, Khalifa F, Mohamed M A, Samrah A S 2020 Complexity 2020 9597619Google Scholar

    [14]

    Wu J H, Liao X F, Yang B 2017 Signal Pro. 141 109Google Scholar

    [15]

    Wang X Y, Feng L, Zhao H Y 2019 Inf. Sci. 486 340Google Scholar

    [16]

    Wang X Y, Li Z M 2019 Optics Lasers Engin. 115 107Google Scholar

    [17]

    Zhang Y 2018 Multimed. Tools Appl. 77 21589Google Scholar

    [18]

    Bansal R, Gupta S, Sharma G 2017 Multimed. Tools. Appl. 76 16529Google Scholar

    [19]

    Hua Z Y, Zhou Y C, Huang H J 2019 Inf. Sci. 480 403Google Scholar

    [20]

    Wang X Y, Yang J J 2021 Inf. Sci. 569 217Google Scholar

    [21]

    Mandal M K, Kar M, Singh S K, Barnwal V K 2014 Secur. Commun. Netw. 7 2145Google Scholar

    [22]

    Wang X Y, Gao S 2020 Inf. Sci. 539 195Google Scholar

    [23]

    Wang M X, Wang X Y, Zhao T T, Zhang C, Xia Z Q, Yao N M 2021 Inf. Sci. 544 1Google Scholar

    [24]

    Wang X Y, Wang T, Xu D H, Chen F 2014 Int. J. Modern Phys. B 28 1450023Google Scholar

    [25]

    Zhou S, Wang X Y, Wang M X, Zhang Y Q 2020 Chaos Solitons & Fract. 141 110225Google Scholar

    [26]

    Wang X Y, Gao S 2020 Inf. Sci. 507 16Google Scholar

    [27]

    Wang X Y, Liu C, Jiang D H 2021 Inf. Sci. 574 505Google Scholar

    [28]

    Zhang Y Q, Wang X Y 2015 Appl. Soft Comput. 26 10Google Scholar

    [29]

    Zhang Y Q, Jia Y R, Wang X Y, Niu Q, Chen N D 2020 IEEE Access 8 213296Google Scholar

    [30]

    He Y, Zhang Y Q, Wang X Y 2020 Neural Comput. Appl. 32 247Google Scholar

    [31]

    Zhang Y Q, Wang X Y, Liu L Y, Liu J 2018 Int. J. Bifurcat. Chaos 28 1850020Google Scholar

    [32]

    Zhang Y Q, He Y, Wang X Y 2018 Physica A 490 148Google Scholar

    [33]

    Zhou S, Wang X Y, Zhang Y Q, Ge B, Wang M X, Gao S 2021 Multimed. Syst. (Published Online)Google Scholar

    [34]

    张勇 2016 混沌数字图像加密 (北京: 清华大学出版社) 第106—205页

    Zhang Y 2016 Chaotic Digital Image Cryptosystem (Beijing: Tsinghua University Press) pp106–205 (in Chinese)

    [35]

    刘树堂, 孙福艳 2009 中国科学(G辑: 物理学 力学 天文学) 39 387

    Liu S T, Sun F Y 2009 Sci. Sin-Phys. Mech. Astron. 39 387

    [36]

    May R M 1976 Nature 261 459Google Scholar

    [37]

    Kanso A 2011 Commun. Nonlinear Sci. Numer. Simul. 16 822Google Scholar

    [38]

    Chinese) [李石磊, 刘崇新, 胡晓宇, 倪骏康 2017 西安交通大学学报 51 35

    Li S L, Liu C X, Hu X Y, Ni J K 2017 J. Xi'an Jiaotong Univ. 51 35 (in

    [39]

    Kaneko K 1989 Physica D 34 1Google Scholar

    [40]

    Sinha S 2002 Phys. Rev. E 66 016209Google Scholar

    [41]

    张盈谦 2015 博士学位论文 (大连: 大连理工大学)

    Zhang Y Q 2015 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [42]

    石航, 王丽丹 2019 物理学报 68 200501Google Scholar

    Shi H, Wang L D 2019 Acta Phys. Sin. 68 200501Google Scholar

    [43]

    庄志本, 李军, 刘静漪, 陈世强 2020 物理学报 69 040502Google Scholar

    Zhuang Z B, Li J, Liu J Y, Chen S Q 2020 Acta Phys. Sin. 69 040502Google Scholar

    [44]

    Zhang Q, Wei X P 2013 IETE Techn. Re. 30 404

    [45]

    Zhang Y Q, Wang X Y 2014 Inf. Sci. 273 329Google Scholar

    [46]

    陈炜, 郭媛, 敬世伟 2020 物理学报 69 240502Google Scholar

    Chen W, Guo Y, Jing S W 2020 Acta Phys. Sin. 69 240502Google Scholar

    [47]

    He Y, Zhang Y Q, He X, Wang X Y 2021 Sci. Rep. 11 6398Google Scholar

    [48]

    葛钊成, 胡汉平 2021 密码学报 8 215Google Scholar

    Ge Z C, Hu H P 2021 Cryptol. Res. 8 215Google Scholar

    [49]

    熊有成, 赵鸿 2019 中国科学: 物理学 力学 天文学 49 92Google Scholar

    Xiong Y C, Zhao H 2019 Sci. Sin-Phys. Mech. Astron. 49 92Google Scholar

    [50]

    Sangiorgio M, Dercole F 2020 Chaos, Solitons Fract. 139 110045Google Scholar

    [51]

    黄伟建, 李永涛, 黄远 2021 物理学报 70 010501Google Scholar

    Huang W J, Li Y T, Huang Y 2021 Acta Phys. Sin. 70 010501Google Scholar

    [52]

    王兴元, 王明军 2007 物理学报 56 5136Google Scholar

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136Google Scholar

    [53]

    Hochreiter S, Schmidhuber J 1997 Neural Comput. 9 1735Google Scholar

    [54]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Phys. D:Nonlinear Phenomena 16 285Google Scholar

    [55]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [56]

    Gottwald G A, Melbourne I 2004 P. Roy. Soc. A-Math. Phy. 460 603Google Scholar

    [57]

    Wu Y, Noonan J P, Agaian S 2011 Cyber J. 1 31

    [58]

    Nepomuceno E G, Nardo L G, Arias-Garcia J, Butusov D N, Tutueva A 2019 Chaos 29 061101Google Scholar

    [59]

    Zhou M J, Wang C H 2020 Signal Pro. 171 107484Google Scholar

    [60]

    Xian Y J, Wang X Y 2021 Inf. Sci. 547 1154Google Scholar

    [61]

    Wang X Y, Xue W H, An J B 2020 Chaos, Solitons Fract. 141 110309Google Scholar

    [62]

    Boriga R, Dăscălescu A C, Priescu I 2014 Signal Processing: Image Communication 29 887

    [63]

    Abolfazl Y N, Mohammad H M, Masood N T 2017 Optics Lasers Eng. 90 225Google Scholar

  • 图 1  超混沌Lorenz相图三维投影

    Fig. 1.  Three dimensional projection of hyperchaotic Lorenz phase diagram.

    图 2  LSTM训练模型示意

    Fig. 2.  LSTM training model diagram.

    图 3  混沌图像加密算法流程图(I)

    Fig. 3.  Chaotic image encryption flow chart algorithm (I).

    图 4  混沌图像加密算法流程图(Ⅱ)

    Fig. 4.  Chaotic image encryption flow chart algorithm (Ⅱ).

    图 5  $ \left\{ {y_i'} \right\} $LSTM模型训练过程

    Fig. 5.  LSTM model training process of $ \left\{ {y_i'} \right\} $.

    图 6  LSTM模型预测

    Fig. 6.  Forecast of LSTM model.

    图 7  截取的$ \left\{ {{y_i}} \right\} $

    Fig. 7.  Part of $ \left\{ {{y_i}} \right\} $.

    图 8  Wolf方法求$ \left\{ {y_i'} \right\} $最大Lyapunov指数过程图

    Fig. 8.  Using wolf method to find the largest Lyapunov exponent process of $ \left\{ {y_i'} \right\} $.

    图 9  新混沌信号0-1测试图

    Fig. 9.  0-1 test image of the new chaotic signal.

    图 10  超混沌Lorenz系统混沌信号0-1测试图

    Fig. 10.  0-1 test image of the hyperchaotic Lorenz signal.

    图 11  新混沌信号功率谱图

    Fig. 11.  The spectrum image of the new chaotic signal

    图 12  超混沌Lorenz信号功率谱图

    Fig. 12.  Spectrum image of hyperchaotic Lorenz signal.

    图 13  序列$ \left\{ {y_i'} \right\} $的相图

    Fig. 13.  Phase diagram of $ \left\{ {y_i'} \right\} $.

    图 14  序列$ \left\{ {{y_i}} \right\} $的相图

    Fig. 14.  Phase diagram of $ \left\{ {{y_i}} \right\} $.

    图 15  数字图像加密解密实验图 (a)鸟(256 × 256)原图; (b)鸟(256 × 256)加密图; (c)鸟(256 × 256)解密图; (d)辣椒(256 × 256)原图; (e)辣椒(256 × 256)加密图; (f)辣椒(256 × 256)解密图; (g)Lena(512 × 512)原图; (h) Lena(512 × 512)加密图; (i) Lena(512 × 512)解密图; (j) 液体泼洒(512 × 512)原图; (k) 液体泼洒(512 × 512)加密图; (l) 液体泼洒(512 × 512)解密图; (m)机场(1024 × 1024)原图; (n) 机场(1024 × 1024)加密图; (o) 机场(1024 × 1024)解密图; (p)飞机(1024 × 1024)原图; (q)飞机(1024 × 1024)加密图; (r)飞机(1024 × 1024)解密图

    Fig. 15.  Experimental picture of digital image encryption and decryption: (a) Original bird image; (b) encrypted bird image; (c) decrypted bird image; (d) original pepper (256 × 256) image; (e) encrypted pepper (256 × 256) image; (f) decrypted pepper (256 × 256) image; (g) original Lena (512 × 512) image; (h) encrypted Lena (512 × 512) image; (i) decrypted Lena (512 × 512) image; (j) original splash (512 × 512) image; (k) encrypted splash (512 × 512) image; (l) decrypted splash (512 × 512) image; (m) original airport (1024 × 1024) image; (n) encrypted airport (1024 × 1024) image; (o) decrypted airport (1024 × 1024) image; (p) original airplane (1024 × 1024) image; (q) encrypted airplane (1024 × 1024) image; (r) decrypted airplane (1024 × 1024) image.

    图 16  密钥敏感性 (a)明文图像; (b)密文用$ x_0' $解密结果; (c)密文用$ \left\{ {{y_i}} \right\} $解密结果

    Fig. 16.  Sensitivity of secret key: (a) Original image; (b) error key $ x_0' $ restoring diagram; (c) error key $ \left\{ {{y_i}} \right\} $ restoring diagram.

    图 17  加密解密图像直方图 (a)鸟(256 × 256)原图与明文直方图; (b)鸟(256 × 256)加密图和密图直方图; (c)辣椒(256 × 256)原图与明文直方图; (d)辣椒(256 × 256)加密图和密图直方图; (e) Lena(512 × 512)原图与明文直方图; (f) Lena(512 × 512)加密图和密图直方图; (g)水滴泼洒(512 × 512)原图与明文直方图; (h)水滴泼洒(512 × 512)加密图和密图直方图; (i)机场(1024 × 1024)原图与明文直方图; (j)机场(1024 × 1024)加密图和密图直方图; (k)飞机(1024 × 1024)原图与明文直方图; (l)飞机(1024 × 1024)加密图和密图直方图

    Fig. 17.  Histograms of plain images and ciphered images: (a) Original image and histogram of bird (256 × 256); (b)cipher image and histogram of bird (256 × 256); (c) original image and histogram of pepper (256 × 256); (d) cipher image and histogram of pepper(256 × 256); (e) original image and histogram of Lena (512 × 512); (f) cipher image and histogram of Lena (512 × 512); (g) original image and histogram of splash (512 × 512); (h) cipher image and histogram of splash (512 × 512); (i) original image and histogram of airport (1024 × 1024); (j) cipher image and histogram of airport (1024 × 1024); (k) original image and histogram of airplane (1024 × 1024); (l) cipher image and histogram of airplane (1024 × 1024).

    图 18  Lena图相关性分析 (a)明文; (b)密图

    Fig. 18.  Correlation coefficients of Lena: (a) Original image; (b) encrypted image

    图 19  抗攻击性检验 (a) 10%剪切; (b) 30%剪切; (c) 80%剪切; (d) 0.001高斯白噪声攻击; (e) 0.01高斯白噪声攻击; (f) 0.1高斯白噪声攻击

    Fig. 19.  Anti attack test: (a) 10% data missed; (b) 30% date missed; (c) 80% data missed; (d) attack of 0.001 Gaussian white noise; (e) attack of 0.01 Gaussian white noise; (f) attack of 0.1 Gaussian white noise.

    图 20  全黑全白图加密解密图像

    Fig. 20.  Encryption and decryption image of all black and all white image.

    表 1  新混沌时间序列NIST测试

    Table 1.  NIST test of the new chotic time series

    统计测试p 结果
    单比特频率测试0.8752通过
    块内频率测试0.8523通过
    游程测试0.6121通过
    块内最长1游程测试0.0828通过
    二进制矩阵秩测试0.1445通过
    离散傅里叶(谱)测试0.8152通过
    非重叠模板匹配测试0.3527通过
    重叠模板匹配测试0.4305通过
    Maurer通用统计测试0.4214通过
    线性复杂度测试0.2341通过
    序列测试0.3053通过
    近似熵测试0.1568通过
    累加和测试0.3257通过
    随机旅行测试0.1523通过
    随机旅行变种测试0.1057通过
    下载: 导出CSV

    表 2  超混沌Lorenz混沌序列NIST测试

    Table 2.  NIST test of the hyperchaotic Lorenz time series.

    统计测试p 结果
    单比特频率测试0.8815通过
    块内频率测试0.7253通过
    游程测试0.5986通过
    块内最长1游程测试0.0823通过
    二进制矩阵秩测试0.1263通过
    离散傅里叶(谱)测试0.8164通过
    非重叠模板匹配测试0.3580通过
    重叠模板匹配测试0.5216通过
    Maurer通用统计测试0.4418通过
    线性复杂度测试0.5052通过
    序列测试0.6015通过
    近似熵测试0.1435通过
    累加和测试0.4863通过
    随机旅行测试0.3997通过
    随机旅行变种测试0.2265通过
    下载: 导出CSV

    表 3  混沌信号统计参数对比

    Table 3.  Comparison of statistical parameters of chaotic signals.

    信号来源最大Lyapunov
    指数
    0-1
    测试
    功率谱
    分析
    相图NIST
    测试
    超混沌Lorenz0.3381[52]0.7937混沌混沌随机
    深度学习2.60020.9250混沌混沌随机
    下载: 导出CSV

    表 4  NPCR和UACI

    Table 4.  NPCR and UACI.

    图片改变$ P(256, 256) $
    NPCR/%UACI/%
    Bird ($ 256 \times 256 $)99.5633.35
    Cameraman ($ 256 \times 256 $)99.6333.30
    Pepper ($ 256 \times 256 $)99.6233.39
    House ($ 256 \times 256 $)99.6333.37
    Lena ($ 512 \times 512 $)99.5833.38
    Airplane ($ 512 \times 512 $)99.5933.42
    Tank ($ 512 \times 512 $)99.6133.49
    Splash ($ 512 \times 512 $)99.6433.54
    Truck ($ 512 \times 512 $)99.6033.47
    Airport ($ 1024 \times 1024 $)99.6233.48
    Airplane ($ 1024 \times 1024 $)99.6033.47
    下载: 导出CSV

    表 5  NPCR和UACI的平均值与其他加密算法的比较

    Table 5.  The average of NPCR and UACI and comparison with other algorithms.

    本文平均值文献[10]文献[13]文献[58]文献[59]
    NPCR/%99.60499.6199.664199.6199.6114
    UACI/%33.4633.4833.612433.4633.4523
    下载: 导出CSV

    表 6  图像相关系数

    Table 6.  Correlation coefficients of images.

    图片明文 密文
    水平垂直对角反对角水平垂直对角反对角
    Lena0.98440.96680.96200.9790 –0.00160.0014–0.0014–0.0010
    Bird0.98890.98260.97130.95190.01140.01030.0104–0.0031
    Cameraman0.95910.93350.91010.9377–0.00990.0141–0.0165–0.0028
    Pepper0.96380.95850.93680.9339–0.0127–0.0014–0.00790.0134
    Airport0.90660.90720.84460.8752–0.00910.0088–0.0014–0.0054
    Splash
    0.99250.98500.97970.95070.00820.00160.0039–0.0060
    Airplane0.94760.96640.94180.9299–0.0278–0.01050.0013–0.0083
    House0.95490.97800.93990.90270.0141–0.0115–0.01760.0005
    Tank0.86780.88150.84140.7949–0.00360.0003–0.0098–0.0065
    Truck0.92580.95610.91140.81940.0028–0.00410.00180.0074
    下载: 导出CSV

    表 7  密文图像相关系数比较

    Table 7.  Comparison of the correlation coefficients of images.

    Lena文献[10]文献[13]文献[58]文献[59]
    水平–0.0016–0.000070.00047–0.00251–0.038118
    垂直0.0014–0.0024–0.03911–0.00292–0.029142
    对角–0.00140.00190.00305–0.001560.002736
    下载: 导出CSV

    表 8  信息熵

    Table 8.  Information entropy of images.

    图片图片大小信息熵
    House$ 256 \times 256 $7.9969
    Cameraman$ 256 \times 256 $7.9971
    Bird$ 256 \times 256 $7.9968
    Pepper$ 256 \times 256 $7.9971
    Lena$ 512 \times 512 $7.9993
    Splash$ 512 \times 512 $7.9993
    Airplane$ 512 \times 512 $7.9993
    Tank$ 512 \times 512 $7.9994
    Truck$ 512 \times 512 $7.9993
    Airport$ 1024 \times 1024 $7.9998
    Airplane$ 1024 \times 1024 $7.9998
    下载: 导出CSV

    表 9  全黑全白图的统计分析

    Table 9.  The statistical analysis of all-black image and all-white image.

    NPCRUACI信息熵相关系数
    水平垂直对角
    全黑图0.99580.33327.99700.00160.00030.0036
    全白图0.99610.33517.99710.00700.00040.0070
    下载: 导出CSV
  • [1]

    Wang X Y, Teng L, Qin X 2012 Signal Pro. 92 1101Google Scholar

    [2]

    Liu W H, Sun K H, Zhu C X 2016 Optics Lasers Eng. 84 26Google Scholar

    [3]

    Wu X J, Kan H C, Kurths J 2015 Appl. Soft Comput. 37 24Google Scholar

    [4]

    Hua Z Y, Zhou Y C, Pun C M, Chen C. L. P 2015 Inf. Sci. 297 80Google Scholar

    [5]

    郑洪英, 李琳, 肖迪 2021 信息网络安全 21 10Google Scholar

    Zheng H Y, Li L, Xiao D 2021 Net Inf. Security 21 10Google Scholar

    [6]

    Dharavathu K, Mosa A 2020 Int. J. Commun. Syst. 33 e4369

    [7]

    Zhao J F, Wang S Y, Chang Y X, Li X F 2015 Nonlinear Dyn. 80 1721Google Scholar

    [8]

    Khan M 2015 Nonlinear Dyn. 82 527Google Scholar

    [9]

    Chai X L, Gan Z H, Yuan K, Yang L Chen Y R 2017 Chin. Phys. B 26 020504Google Scholar

    [10]

    Chai X L, Fu J Y, Zhang J T, Han D J, Gan Z H 2021 Neural Comput. Appl. 33 10271Google Scholar

    [11]

    Ran Q W, Yuan L, Zhao T Y 2015 Opt. Commun. 348 43Google Scholar

    [12]

    Kaur M, Kumar V 2018 Int. J. Bifurcat. Chaos 28 1850132Google Scholar

    [13]

    Yasser I, Khalifa F, Mohamed M A, Samrah A S 2020 Complexity 2020 9597619Google Scholar

    [14]

    Wu J H, Liao X F, Yang B 2017 Signal Pro. 141 109Google Scholar

    [15]

    Wang X Y, Feng L, Zhao H Y 2019 Inf. Sci. 486 340Google Scholar

    [16]

    Wang X Y, Li Z M 2019 Optics Lasers Engin. 115 107Google Scholar

    [17]

    Zhang Y 2018 Multimed. Tools Appl. 77 21589Google Scholar

    [18]

    Bansal R, Gupta S, Sharma G 2017 Multimed. Tools. Appl. 76 16529Google Scholar

    [19]

    Hua Z Y, Zhou Y C, Huang H J 2019 Inf. Sci. 480 403Google Scholar

    [20]

    Wang X Y, Yang J J 2021 Inf. Sci. 569 217Google Scholar

    [21]

    Mandal M K, Kar M, Singh S K, Barnwal V K 2014 Secur. Commun. Netw. 7 2145Google Scholar

    [22]

    Wang X Y, Gao S 2020 Inf. Sci. 539 195Google Scholar

    [23]

    Wang M X, Wang X Y, Zhao T T, Zhang C, Xia Z Q, Yao N M 2021 Inf. Sci. 544 1Google Scholar

    [24]

    Wang X Y, Wang T, Xu D H, Chen F 2014 Int. J. Modern Phys. B 28 1450023Google Scholar

    [25]

    Zhou S, Wang X Y, Wang M X, Zhang Y Q 2020 Chaos Solitons & Fract. 141 110225Google Scholar

    [26]

    Wang X Y, Gao S 2020 Inf. Sci. 507 16Google Scholar

    [27]

    Wang X Y, Liu C, Jiang D H 2021 Inf. Sci. 574 505Google Scholar

    [28]

    Zhang Y Q, Wang X Y 2015 Appl. Soft Comput. 26 10Google Scholar

    [29]

    Zhang Y Q, Jia Y R, Wang X Y, Niu Q, Chen N D 2020 IEEE Access 8 213296Google Scholar

    [30]

    He Y, Zhang Y Q, Wang X Y 2020 Neural Comput. Appl. 32 247Google Scholar

    [31]

    Zhang Y Q, Wang X Y, Liu L Y, Liu J 2018 Int. J. Bifurcat. Chaos 28 1850020Google Scholar

    [32]

    Zhang Y Q, He Y, Wang X Y 2018 Physica A 490 148Google Scholar

    [33]

    Zhou S, Wang X Y, Zhang Y Q, Ge B, Wang M X, Gao S 2021 Multimed. Syst. (Published Online)Google Scholar

    [34]

    张勇 2016 混沌数字图像加密 (北京: 清华大学出版社) 第106—205页

    Zhang Y 2016 Chaotic Digital Image Cryptosystem (Beijing: Tsinghua University Press) pp106–205 (in Chinese)

    [35]

    刘树堂, 孙福艳 2009 中国科学(G辑: 物理学 力学 天文学) 39 387

    Liu S T, Sun F Y 2009 Sci. Sin-Phys. Mech. Astron. 39 387

    [36]

    May R M 1976 Nature 261 459Google Scholar

    [37]

    Kanso A 2011 Commun. Nonlinear Sci. Numer. Simul. 16 822Google Scholar

    [38]

    Chinese) [李石磊, 刘崇新, 胡晓宇, 倪骏康 2017 西安交通大学学报 51 35

    Li S L, Liu C X, Hu X Y, Ni J K 2017 J. Xi'an Jiaotong Univ. 51 35 (in

    [39]

    Kaneko K 1989 Physica D 34 1Google Scholar

    [40]

    Sinha S 2002 Phys. Rev. E 66 016209Google Scholar

    [41]

    张盈谦 2015 博士学位论文 (大连: 大连理工大学)

    Zhang Y Q 2015 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [42]

    石航, 王丽丹 2019 物理学报 68 200501Google Scholar

    Shi H, Wang L D 2019 Acta Phys. Sin. 68 200501Google Scholar

    [43]

    庄志本, 李军, 刘静漪, 陈世强 2020 物理学报 69 040502Google Scholar

    Zhuang Z B, Li J, Liu J Y, Chen S Q 2020 Acta Phys. Sin. 69 040502Google Scholar

    [44]

    Zhang Q, Wei X P 2013 IETE Techn. Re. 30 404

    [45]

    Zhang Y Q, Wang X Y 2014 Inf. Sci. 273 329Google Scholar

    [46]

    陈炜, 郭媛, 敬世伟 2020 物理学报 69 240502Google Scholar

    Chen W, Guo Y, Jing S W 2020 Acta Phys. Sin. 69 240502Google Scholar

    [47]

    He Y, Zhang Y Q, He X, Wang X Y 2021 Sci. Rep. 11 6398Google Scholar

    [48]

    葛钊成, 胡汉平 2021 密码学报 8 215Google Scholar

    Ge Z C, Hu H P 2021 Cryptol. Res. 8 215Google Scholar

    [49]

    熊有成, 赵鸿 2019 中国科学: 物理学 力学 天文学 49 92Google Scholar

    Xiong Y C, Zhao H 2019 Sci. Sin-Phys. Mech. Astron. 49 92Google Scholar

    [50]

    Sangiorgio M, Dercole F 2020 Chaos, Solitons Fract. 139 110045Google Scholar

    [51]

    黄伟建, 李永涛, 黄远 2021 物理学报 70 010501Google Scholar

    Huang W J, Li Y T, Huang Y 2021 Acta Phys. Sin. 70 010501Google Scholar

    [52]

    王兴元, 王明军 2007 物理学报 56 5136Google Scholar

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136Google Scholar

    [53]

    Hochreiter S, Schmidhuber J 1997 Neural Comput. 9 1735Google Scholar

    [54]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Phys. D:Nonlinear Phenomena 16 285Google Scholar

    [55]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [56]

    Gottwald G A, Melbourne I 2004 P. Roy. Soc. A-Math. Phy. 460 603Google Scholar

    [57]

    Wu Y, Noonan J P, Agaian S 2011 Cyber J. 1 31

    [58]

    Nepomuceno E G, Nardo L G, Arias-Garcia J, Butusov D N, Tutueva A 2019 Chaos 29 061101Google Scholar

    [59]

    Zhou M J, Wang C H 2020 Signal Pro. 171 107484Google Scholar

    [60]

    Xian Y J, Wang X Y 2021 Inf. Sci. 547 1154Google Scholar

    [61]

    Wang X Y, Xue W H, An J B 2020 Chaos, Solitons Fract. 141 110309Google Scholar

    [62]

    Boriga R, Dăscălescu A C, Priescu I 2014 Signal Processing: Image Communication 29 887

    [63]

    Abolfazl Y N, Mohammad H M, Masood N T 2017 Optics Lasers Eng. 90 225Google Scholar

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [2] 王伟杰, 姜美美, 王淑梅, 曲英杰, 马鸿洋, 邱田会. 基于量子长短期记忆网络的量子图像混沌加密方案. 物理学报, 2023, 72(12): 120301. doi: 10.7498/aps.72.20230242
    [3] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [4] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [5] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测. 物理学报, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [6] 苏博, 陶芬, 李可, 杜国浩, 张玲, 李中亮, 邓彪, 谢红兰, 肖体乔. 同步辐射纳米CT图像配准方法研究. 物理学报, 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [7] 王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋. 基于DNA编码与交替量子随机行走的彩色图像加密算法. 物理学报, 2021, 70(23): 230302. doi: 10.7498/aps.70.20211255
    [8] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [9] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [10] 方洁, 姜明浩, 安小宇, 孙军伟. 基于混沌加密和DNA编码的“一图一密”图像加密算法. 物理学报, 2021, 70(7): 070501. doi: 10.7498/aps.70.20201642
    [11] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [12] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [13] 李军, 后新燕. 基于指数加权-核在线序列极限学习机的混沌系统动态重构研究. 物理学报, 2019, 68(10): 100503. doi: 10.7498/aps.68.20190156
    [14] 温贺平, 禹思敏, 吕金虎. 基于Hadoop大数据平台和无简并高维离散超混沌系统的加密算法. 物理学报, 2017, 66(23): 230503. doi: 10.7498/aps.66.230503
    [15] 官国荣, 吴成茂, 贾倩. 一种改进的高性能Lorenz系统构造及其应用. 物理学报, 2015, 64(2): 020501. doi: 10.7498/aps.64.020501
    [16] 艾星星, 孙克辉, 贺少波, 王会海. 简化Lorenz多涡卷混沌吸引子的设计与应用. 物理学报, 2014, 63(12): 120511. doi: 10.7498/aps.63.120511
    [17] 邓海涛, 邓家先, 邓小梅. 基于EZW的图像压缩和树形加密同步算法. 物理学报, 2013, 62(11): 110701. doi: 10.7498/aps.62.110701
    [18] 朱从旭, 孙克辉. 对一类超混沌图像加密算法的密码分析与改进. 物理学报, 2012, 61(12): 120503. doi: 10.7498/aps.61.120503
    [19] 孙福艳, 吕宗旺. 空间混沌序列的加密特性研究. 物理学报, 2011, 60(4): 040503. doi: 10.7498/aps.60.040503
    [20] 孟祥锋, 彭翔, 蔡履中, 何文奇, 秦琬, 郭继平, 李阿蒙. 优化的两步相移算法在图像加密中的应用研究. 物理学报, 2010, 59(9): 6118-6124. doi: 10.7498/aps.59.6118
计量
  • 文章访问数:  9485
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-07-08
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回