搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双声光调制的高稳定双频激光

贺子洋 安炳南 王韬 赵晓康 刘向嵩 陈力荣 王雅君

引用本文:
Citation:

基于双声光调制的高稳定双频激光

贺子洋, 安炳南, 王韬, 赵晓康, 刘向嵩, 陈力荣, 王雅君

High-stability dual-frequency laser based on dual acousto-optic modulation

HE Ziyang, AN Bingnan, WANG Tao, ZHAO Xiaokang, LIU Xiangsong, CHEN Lirong, WANG Yajun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高稳定双频激光光源是实现国家超精密测量能力的关键技术, 也是支撑高端装备制造质量的基石. 本文基于双声光调制方案搭建了高稳定双频激光光源及其频差稳定性评估系统. 通过研究双声光调制生成双频激光的机理, 逐级构建了频差稳定性劣化模型, 并针对性地进行了技术改进. 研究表明, 双频激光光源的频率稳定性与双频频差稳定性均会影响外差干涉测量的精度, 而双频频差稳定性由射频信号稳定性和功率放大器非线性失真决定. 本文通过设计高阶谐波滤除技术和基于铷钟的高稳定射频发生器, 将频差稳定性优化至9×10–11@1 s, 6×10–10@1000 s, 双频频差稳定性对外差干涉测量精度的影响降低至亚飞米量级. 此时, 双频激光光源的频差稳定性指标充分满足皮米级激光干涉测量应用需求. 结合当前最先进的超稳腔稳频技术, 本文高稳定双频激光光源可以支持皮米甚至飞米级精度的外差干涉测量, 在超精密测量等领域具有重要应用前景.
    A high-stability dual-frequency laser source is a key technology for achieving national ultra-precision measurement capability and also the foundation for supporting the quality of high-end equipment manufacturing. In this work, a high-stability dual-frequency laser source and its frequency difference stability evaluation system are both built based on a double acousto-optic modulation scheme. By investigating the mechanism of generating dual-frequency laser based on double acousto-optic modulation, a degradation model of frequency difference stability is constructed, and targeted technical improvements are implemented. The study shows that the frequency stability of the dual-frequency laser source and the stability of the frequency difference both affect the accuracy of heterodyne interference measurement. The frequency difference stability is determined by factors such as the stability of RF signal and the nonlinear distortion of the power amplifier. This study first optimizes the frequency difference stability to 7.5×10–10 for 1s operation and 1.2×10–9 for 1000s operation by designing a high-order harmonic filtering technique. Then, the DG 4202 RF generator is replaced with a rubidium-clock-based high-stability RF signal generator, thus further optimizing the frequency difference stability to 9×10–11 for 1s operation and 6×10–10 for 1000s operation. The influence of dual-frequency frequency difference stability on heterodyne interference measurement accuracy is reduced to the sub-femtometer level. And the frequency difference stability of the dual-frequency laser source fully meets the application requirements of picometer-level laser interference measurement. Combined with the most advanced frequency stabilization technology using ultra-stable cavity, our high-stability dual-frequency laser source can support heterodyne interference measurement with picometer or even femtometer-level accuracy, demonstrating significant potential for applications in fields such as ultra-precision measurements.
  • 图 1  双声光调制双频激光干涉测量系统整体框架图(Phase register为相位累加器; PTDC为脉冲时间数字转换器; DAC为数字-模拟转换器; IF Filter为中频滤波器; RF Filter为射频滤波器; 信号处理系统为正交锁相解调与相位细分)

    Fig. 1.  Overall framework diagram of dual frequency laser measurement system generated by dual AOM (PTDC represents pulse-time digital converter; DAC represents digital-to-analog converter; IF filter represents intermediate frequency filter; RF filter represents radio frequency filter; Signal processing system represents quadrature phase-locked calculation and phase subdivision).

    图 2  (a)位移测量误差与双频频差短期波动关系图; (b)位移测量误差与双频频差长期漂移关系图

    Fig. 2.  (a) Relationship between position measurement error and short-term fluctuations of dual-frequency frequency difference; (b) relationship between position measurement error and long-term drift of dual-frequency frequency difference.

    图 3  基于双声光调制的双频激光光源及其频差稳定性评估系统装置图(NPRO激光器为非平面环形腔激光器; PBS为偏振分束棱镜; HR为1064 nm高反射镜; AOM为声光调制器; NPBS为消偏振分束棱镜; P为检偏器; PD为光电探测器)

    Fig. 3.  Device diagram of the dual-frequency laser source based on double acousto-optic modulation and its frequency difference stability evaluation system. (NPRO laser represents non-planar ring oscillator laser; PBS1-2 represents polarizing beam splitter prism; HR1-3 represents 1064 nm high reflection mirror; AOM1-2 represents acousto-optic modulator; NPBS represents depolarization beam splitter prism; P represents polarizer; PD represents photodetector).

    图 4  (a)未滤除高阶谐波的拍频信号频域图; (b)滤除高阶谐波后的拍频信号频域图

    Fig. 4.  (a) Frequency domain diagram of beat signal without high-order harmonics filtered; (b) frequency domain diagram of beat signal with high-order harmonics filtered.

    图 5  基于DG 4202射频发生器的双频激光频差稳定性测试结果, 内插图为红色方框部分对应的频差稳定性短期测量结果

    Fig. 5.  Dual-frequency laser frequency difference stability test results based on the DG 4202 RF generator, with the inset figure showing the short-term measurement results of frequency difference stability corresponding to the red-framed section.

    图 6  基于铷钟高稳定射频发生器的双频激光频差稳定性测试结果, 内插图为红色方框部分对应的频差稳定性短期测量结果

    Fig. 6.  Dual-frequency laser frequency difference stability test results based on a rubidium clock high-stability RF generator, with the inset figure showing the short-term measurement results of frequency difference stability corresponding to the red-framed section.

    图 7  Allan方差分析结果图

    Fig. 7.  Allan deviation analysis results.

  • [1]

    所睿, 范志军, 李岩, 张书练 2004 激光与红外 34 251253Google Scholar

    Suo R, Fan Z J, Li Y, Zhang S L 2004 Laser Infrared 34 251253Google Scholar

    [2]

    Karsten D, Albrecht R 2003 Class. Quantum Grav. 20 S1Google Scholar

    [3]

    Hough J, Robertson D, Ward H, McNamara P, LISA Science Team 2003 Adv. Space Res. 32 12471250

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 212219

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 212219

    [5]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 240246

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 240246

    [6]

    王娟, 齐克奇, 王少鑫, 高瑞弘, 李磐, 杨然, 刘河山, 罗子人 2024 中国科学: 物理学 力学 天文学 54 109127

    Wang J, Qi K Q, Wang S X, Gao R H, Li P, Yang R, Liu H S, Luo Z R 2024 Sci. Sin. Phys. Mech. Astron. 54 109127

    [7]

    李正坤, 张钟华, 鲁云峰, 白洋, 许金鑫, 胡鹏程, 刘永猛, 由强, 王大伟, 贺青, 谭久彬 2018 物理学报 67 160601Google Scholar

    Li Z K, Zhang Z H, Lu Y F, Bai Y, Xu J X, Hu P C, Liu Y M, You Q, Wang D W, He Q, Tan J B 2018 Acta Phys. Sin. 67 160601Google Scholar

    [8]

    乐陶然, 穆衡霖, 徐欣, 谈宜东, 尉昊赟, 李岩 2023 物理学报 72 149501Google Scholar

    Le T R, Mu H L, Xu X, Tan Y D, Wei H Y, Li Y 2023 Acta Phys. Sin. 72 149501Google Scholar

    [9]

    Chen H, Li L X, Li R G, Yu G D, Chen Q 2023 Electronics 12 4960.Google Scholar

    [10]

    曹利波 2008 红外与激光工程 37 200202

    Cao L B 2008 Infrared Laser Eng. 37 200202

    [11]

    Li L, Yuan L, Wang L, Zhang R, Wu Y P, Wang X Y 2021 Chin. J. Aeronaut. 34 191209

    [12]

    Lee A Y, Yu J W, Kahn P B, Stoller R L 2002 IEEE Trans. Aerosp. Electron. Syst. 38 502-514Google Scholar

    [13]

    Andrew Y, Marco P, Gian B P, Ulrich K, Jens F, Petr K, Antti L, Santeri S, Ramiz H, Mehmet C, Michael M, Anton N 2009 Nanotrace: the investigation of non-linearity in optical interferometers using X-ray interferometry

    [14]

    中华人民共和国国务院, 计量发展规划(2013–2020) 2013 中华人民共和国国务院公报 9 613

    State Council of the People's Republic of China, Development Plan for Metrology (2013–2020) 2013 Gazette of the State Council of the People's Republic of China 9 613

    [15]

    戴玉, 张文喜, 孔新新, 沈杨翊, 徐豪, 张晓强 2024 物理学报 73 084206Google Scholar

    Dai Y, Zhang W X, Kong X X, Shen Y Y, Xu H, Zhang X Q 2024 Acta Phys. Sin. 73 084206Google Scholar

    [16]

    杨宏兴, 付海金, 胡鹏程, 杨睿韬, 邢旭, 于亮, 常笛, 谭久彬 2022 激光与光电子学进展 59 305319

    Yang H X, Fu H J, Hu P C, Yang R T, Xing X, Yu L, Chang D, Tan J B 2022 Laser Optoelectron. Prog. 59 305319

    [17]

    祁春雨 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Qi C Y 2019 M. S. Thesis (Harbin: Harbin Institute of Technology

    [18]

    张书练 2023 光学学报 43 189198

    Zhang S L 2023 Acta Opt. Sin. 43 189198

    [19]

    Cheng L R, Wang T, An B N, He Z Y, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2026 J. Quantum Opt. 32 030201 (in Chinese) 陈力荣, 王韬, 安炳南, 贺子洋, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2026量子光学学报 32 030201

    [20]

    许冠军, 焦东东, 张林波, 高静, 刘军, 范乐, 陈龙, 董瑞芳, 刘涛, 张首刚 2021 时间频率学报 44 244254

    Xu G J, Jiao D D, Zhang L B, Gao J, Liu J, Fan L, Chen L, Dong R F, Liu T, Zhang S G 2021 J. Time Freq. 44 244254

    [21]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zhen Y H 2025 J. Quantum Opt. 31 040201

    [22]

    陈迪俊, 李唐, 周翠芸, 汪凌珂, 方苏, 孙广伟, 耿建新, 洪毅, 侯霞, 陈卫标 2024 中国激光 51 350362

    Cheng J D, Li T, Zhou C Y, Wang L K, Fang S, Sun G W, Geng J X, Hong Y, Hou X, Chen W B 2024 Chin. J. Lasers 51 350362

    [23]

    Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sonderhouse L, Robinson J M, Ye J, Riehle F, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar

    [24]

    Yang H X, Yin Z X, Yang R T, Hu P C, Li J, Tan J B 2020 Sensors 20 1083Google Scholar

    [25]

    Köchert P, Weichert C, Flügge J, Wurmus J, Manske E 2014 Proceedings of the 58th ILMENAU SCIENTIFIC COLLOQUIUM September 8-12, 2014 p068

    [26]

    AA Opto-Electronic, “Do you know Acousto-optics ?” rue de Versailles F-78470 Saint-Rémy-lès-Chevreuse Tél. : 33(0)1 30 52 87 17 - Fax : 33(0)1 30 52 78 03 - www. a-a. fr

    [27]

    Kazimierczuk M K 2015 RF Power Amplifiers (Hoboken: Wiley) pp65-166

    [28]

    Li R X, Jiao N J, An B N, Wang Y J, Li W, Chen L R, Tian L, Zheng Y H 2024 Opt. Laser Technol. 174 110617Google Scholar

    [29]

    Jiao N J, Li R X, An B N, W J W, Chen L R, Wang Y J, Zheng Y H 2024 Opt. Lett. 49 35683571

  • [1] 戴玉, 张文喜, 孔新新, 沈杨翊, 徐豪, 张晓强. 基于低频外差干涉的光纤环形器重合度检测. 物理学报, doi: 10.7498/aps.73.20231941
    [2] 徐靖翔, 孔明, 许新科. 基于旋转不变技术信号参数估计的激光扫频干涉测量方法. 物理学报, doi: 10.7498/aps.70.20201135
    [3] 伍洲, 张文喜, 相里斌, 李杨, 孔新新. 频差偏差对全视场外差测量精度的影响. 物理学报, doi: 10.7498/aps.67.20171837
    [4] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, doi: 10.7498/aps.65.140601
    [5] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, doi: 10.7498/aps.65.209501
    [6] 朱守深, 张书练, 刘维新, 牛海莎. HeNe双频激光器频差的激光内雕赋值法. 物理学报, doi: 10.7498/aps.63.064201
    [7] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, doi: 10.7498/aps.62.184206
    [8] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究. 物理学报, doi: 10.7498/aps.62.204205
    [9] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法. 物理学报, doi: 10.7498/aps.61.034207
    [10] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法. 物理学报, doi: 10.7498/aps.61.044207
    [11] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, doi: 10.7498/aps.61.180601
    [12] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, doi: 10.7498/aps.58.8326
    [13] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法. 物理学报, doi: 10.7498/aps.58.5473
    [14] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性. 物理学报, doi: 10.7498/aps.58.3966
    [15] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移. 物理学报, doi: 10.7498/aps.56.2756
    [16] 毛 威, 张书练. 基于双折射双频激光器中的调频回馈位移测量研究. 物理学报, doi: 10.7498/aps.56.1409
    [17] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究. 物理学报, doi: 10.7498/aps.56.2663
    [18] 毛 威, 张书练, 张连清, 朱 钧, 李 岩. 双频激光回馈位移测量研究. 物理学报, doi: 10.7498/aps.55.4704
    [19] 张光寅, 张潮波, 丁欣, 宋峰, 郭曙光, 孟凡臻. 固体激光腔动力学稳定性的调控. 物理学报, doi: 10.7498/aps.51.253
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热. 物理学报, doi: 10.7498/aps.26.133
计量
  • 文章访问数:  455
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-01-24
  • 上网日期:  2025-02-27

/

返回文章
返回