搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平场复用多焦点结构光照明超分辨显微成像

葛阳阳 何灼奋 黄黎琳 林丹樱 曹慧群 屈军乐 于斌

引用本文:
Citation:

平场复用多焦点结构光照明超分辨显微成像

葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌

Flat-field multiplexed multifocal structured illumination super-resolution microscopy

Ge Yang-Yang, He Zhuo-Fen, Huang Li-Lin, Lin Dan-Ying, Cao Hui-Qun, Qu Jun-Le, Yu Bin
PDF
HTML
导出引用
  • 多焦点结构光照明显微技术(multifocal structured illumination microscopy, MSIM)能在50 μm的成像深度内和1Hz的成像速度下实现两倍于衍射极限分辨率的提升, 相比传统的宽场结构光照明显微技术, 具有较大的成像深度和层析能力, 更适合应用于厚样品的长时程三维超分辨成像. 然而, MSIM存在成像速度慢、图像处理过程复杂等问题. 本文提出了一种基于平场复用多焦点结构光照明的快速超分辨显微成像方法和系统(flat-field multiplexed MSIM, FM-MSIM), 通过在照明光路中插入光束整形器件, 将高斯光束转变为均为分布的平顶光束, 提高激发点阵的强度均匀性和扩大视场; 通过将每个衍射受限的激发点沿y方向延长, 形成新的多路复用多焦点阵照明图案, 提高能量利用率, 减少扫描步数, 进而提高成像速度和信噪比; 结合基于多重测量矢量模型的稀疏贝叶斯学习图像重构算法, 简化图像重构步骤, 在保证空间分辨率的同时实现至少4倍于传统MSIM的成像速度. 在此基础上, 利用搭建的FM-MSIM系统进行了BSC细胞微管样片和小鼠肾切片标准样片的超分辨成像实验, 实验结果证明了该系统的快速三维超分辨成像能力, 对于MSIM的发展具有重要的意义.
    Multifocal structured illumination microscopy (MSIM) can achieve optically sectioned images with twice the diffraction limited resolution at an imaging speed of 1 Hz and an imaging depth of up to 50 μm. Compared with the traditional wide-field SIM, the MSIM has greater imaging depth and optical sectionning ability, and it is more suitable for long-term three-dimensional (3D) super-resolution imaging of living thick samples. However, the MSIM has some problems, such as slow imaging speed and complex image post-processing process. In this work, a fast super-resolution imaging method and system based on the flat-field multiplexed MSIM (FM-MSIM) is proposed. By inserting a beam shaping device into the illumination light path, the Gaussian beam is reshaped into a uniform flat-top profile, thereby improving the intensity uniformity of excitation multi-spot focal array and expanding the field of view. By elongating each diffraction limited excitation focal point four times along the Y direction to form a new multiplexed multifocal array pattern, the number of scanning steps is reduced, the energy utilization is improved, and then the imaging speed and signal-to-noise ratio are improved. Combined with the sparse Bayesian learning image reconstruction algorithm based on multiple measurement vector model, the image reconstruction steps are simplified, the imaging speed can be improved at least 4 times while ensuring the spatial resolution of MSIM. On this basis, the established FM-MSIM system is used to carry out the super-resolution imaging experiments on the BSC cell microtubule samples and mouse kidney slices. The experimental results prove the fast three-dimensional super-resolution imaging ability of the system, which is of great significance in developing the fast MSIM.
      通信作者: 于斌, yubin@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61975131, 62175166, 61835009, 61775144, )和深圳市基础研究项目(批准号: JCYJ20200109105411133, JCYJ20170412105003520)资助的课题.
      Corresponding author: Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 62175166, 61835009, 61775144) and the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20200109105411133, JCYJ20170412105003520).
    [1]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [2]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206Google Scholar

    [3]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915Google Scholar

    [4]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793Google Scholar

    [5]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [6]

    Gustafsson M G L 2000 J. Microsc. 198 82Google Scholar

    [7]

    Gustafsson M G L 2005 Proc. Natl. Acad. Sci. U. S. A. 102 13081Google Scholar

    [8]

    Gustafsson M G L, Shao L, Carlton P M, Wang C J, Golubovskaya I N, Cande W Z, Agard D A, Sedat J W 2008 Biophys. J. 94 4957Google Scholar

    [9]

    Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P, Tang L, Zhang Y, Liu Y, Tan S, Chen L 2018 Nat. Biotechnol. 36 451Google Scholar

    [10]

    Guo Y, Li D, Zhang S, Yang Y, Liu J J, Wang X, Liu C, Milkie D E, Moore R P, Tulu U S, Kiehart D P, Hu J, Lippincott-Schwartz J, Betzig E, Li D 2018 Cell 175 1430Google Scholar

    [11]

    Muller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [12]

    York A G, Parekh S H, Dalle Nogare D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [13]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grosshans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 21000Google Scholar

    [14]

    York A G, Chandris P, Nogare D D, Head J, Wawrzusin P, Fischer R S, Chitnis A, Shroff H 2013 Nat. Methods 10 1122Google Scholar

    [15]

    De Luca G M, Breedijk R M, Brandt R A, Zeelenberg C H, de Jong B E, Timmermans W, Azar L N, Hoebe R A, Stallinga S, Manders E M 2013 Biomed. Opt. Express 4 2644Google Scholar

    [16]

    Roth S, Heintzmann R 2016 Methods Appl. Fluoresc. 4 045005Google Scholar

    [17]

    Wu J J, Li S W, Cao H Q, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 31430Google Scholar

  • 图 1  FM-MSIM系统光路示意图

    Fig. 1.  Schematic diagram of FM-MSIM system.

    图 2  平场照明实验表征 (a)无光束整形器的罗丹明均匀溶液宽场成像; (b)有光束整形器的罗丹明均匀溶液宽场成像; (c)图(a)和图(b)中蓝色虚线部分布归一化强度轮廓图; (d)无光束整形器的激发点阵; (e)有光束整形器的激发点阵

    Fig. 2.  Experimental characterization of flat-field illumination: (a) Wide field imaging of uniform Rhodamine 6 G solution without a beam shaper; (b) wide field imaging of uniform Rhodamine 6 G solution with a beam shaper; (c) normalized intensity fitting profiles along blue dotted line in panel (a) and panel (b); (d) a multifocal excitation pattern without a beam shaper; (e) a multifocal excitation pattern with a beam shaper.

    图 3  复用多焦点照明原理图 (a) 4 × 1激发点阵扫描原理图; (b) 1 × 1激发点阵扫描原理图; (c)复用的多焦点激发罗丹明均匀染料样品荧光图像

    Fig. 3.  Schematic diagram of multiplexed multifocal excitation illumination: (a) Schematic diagram of 4 × 1 excitation spot array scanning; (b) schematic diagram of 1 × 1 excitation spot array scanning; (c) fluorescece image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane.

    图 4  原始数据与系统PSF转换为矩阵形式的过程 (a) FM-MSIM点阵数据转换为矩阵Y; (b)系统PSF转换为矩阵H

    Fig. 4.  Process of converting raw images and system PSF into matrix form: (a) FM-MSIM multifocal patterns data is converted to matrix Y; (b) System PSF is converted to matrix H.

    图 5  FM-MSIM 分辨率标定 (a)减去背景噪声的宽场微管图像; (b) 1 × 1点扫模板的MSBL重构图像; (c) 4 × 1点扫模板的MSBL重构图像; (d)蓝色实线处微管强度轮廓线; (e) 白色实线处微管强度轮廓线

    Fig. 5.  Resolution in FM-MSIM: (a) Wide field image of microtubule in BSCs labeled with Alexa Fluor 488 phalloidin by subtracting background noise; (b) MSBL reconstructed image of 1 × 1 point scan mode; (c) MSBL reconstructed image of 4 × 1 point scan mode; (d) plots of intensity along blue solid line in panels (a)–(c); (e) plots of intensity along white solid line in panels (a)–(c).

    图 6  小鼠肾切片不同轴向位置(z = 0, 3 , 6 μm)处的图像: (a)—(c)宽场图像; (d)—(f)MSBL重构图像; (g)图(a)和图(d)中蓝色虚线处的归一化强度分布轮廓曲线; (h) 图(b)和图(e)相同位置处归一化强度分布轮廓曲线; (i)图(c)和图(f)相同位置处归一化强度分布轮廓曲线

    Fig. 6.  Images of mouse kidney section at different axial positions(z = 0, 3 and 6 μm): (a)–(c) Wide field images; (d)–(f) MSBL reconstruction images; (g) normalized intensity distribution profiles along the blue dotted line in panel (a) and panel (d); (h) normalized intensity distribution profiles along the same position in panel (b) and panel (e); (i) normalized intensity distribution profiles along the same position in panel (c) and panel (f).

  • [1]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [2]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206Google Scholar

    [3]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915Google Scholar

    [4]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793Google Scholar

    [5]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [6]

    Gustafsson M G L 2000 J. Microsc. 198 82Google Scholar

    [7]

    Gustafsson M G L 2005 Proc. Natl. Acad. Sci. U. S. A. 102 13081Google Scholar

    [8]

    Gustafsson M G L, Shao L, Carlton P M, Wang C J, Golubovskaya I N, Cande W Z, Agard D A, Sedat J W 2008 Biophys. J. 94 4957Google Scholar

    [9]

    Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P, Tang L, Zhang Y, Liu Y, Tan S, Chen L 2018 Nat. Biotechnol. 36 451Google Scholar

    [10]

    Guo Y, Li D, Zhang S, Yang Y, Liu J J, Wang X, Liu C, Milkie D E, Moore R P, Tulu U S, Kiehart D P, Hu J, Lippincott-Schwartz J, Betzig E, Li D 2018 Cell 175 1430Google Scholar

    [11]

    Muller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [12]

    York A G, Parekh S H, Dalle Nogare D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [13]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grosshans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 21000Google Scholar

    [14]

    York A G, Chandris P, Nogare D D, Head J, Wawrzusin P, Fischer R S, Chitnis A, Shroff H 2013 Nat. Methods 10 1122Google Scholar

    [15]

    De Luca G M, Breedijk R M, Brandt R A, Zeelenberg C H, de Jong B E, Timmermans W, Azar L N, Hoebe R A, Stallinga S, Manders E M 2013 Biomed. Opt. Express 4 2644Google Scholar

    [16]

    Roth S, Heintzmann R 2016 Methods Appl. Fluoresc. 4 045005Google Scholar

    [17]

    Wu J J, Li S W, Cao H Q, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 31430Google Scholar

  • [1] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究. 物理学报, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [2] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统. 物理学报, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [3] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究. 物理学报, 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [4] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术. 物理学报, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [6] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211712
    [7] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [8] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针. 物理学报, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [9] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用. 物理学报, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [10] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [11] 刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐. 荧光寿命显微成像技术及应用的最新研究进展. 物理学报, 2018, 67(17): 178701. doi: 10.7498/aps.67.20180320
    [12] 赵天宇, 周兴, 但旦, 千佳, 汪召军, 雷铭, 姚保利. 结构光照明显微中的偏振控制. 物理学报, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [13] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [14] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [15] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [16] 文方青, 张弓, 贲德. 基于块稀疏贝叶斯学习的多任务压缩感知重构算法. 物理学报, 2015, 64(7): 070201. doi: 10.7498/aps.64.070201
    [17] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究. 物理学报, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [18] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [19] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, 2012, 61(10): 104203. doi: 10.7498/aps.61.104203
    [20] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
计量
  • 文章访问数:  5952
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-10-02
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-02-20

/

返回文章
返回