搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耳蜗中tip-link张力与静纤毛运动动力学研究

徐旭 马文凯 姚文娟

引用本文:
Citation:

耳蜗中tip-link张力与静纤毛运动动力学研究

徐旭, 马文凯, 姚文娟

Dynamic study of tip-link tension and stereocilia motion in cochlea

Xu Xu, Ma Wen-Kai, Yao Wen-Juan
PDF
HTML
导出引用
  • 诠释耳蜗的主动感音放大机制一直是未解的医学难题. 这种机制与耳蜗中外毛细胞顶端的静纤毛运动密切相关, 静纤毛运动又受到tip-link张力与淋巴液流体力的调节. 因此, 研究静纤毛运动过程中tip-link张力是诠释耳蜗的主动感音放大机制的重要环节. 本文把静纤毛视为变形体, 基于泊肃叶流动理论并结合分布参数模型, 推导了静纤毛运动的解析解. 研究了盖膜剪切荷载作用下静纤毛和淋巴液相互作用的动力响应以及tip-link张力的变化规律. 研究发现: 当静纤毛的杨氏模量减小时, 在小于峰值频率的区域, tip-link张力显著增大, $ {f_2} $的峰值频率减小. 以往的研究将静纤毛作为刚体, 势必导致低频声音信号作用减弱. 当系数c = 0 (无黏性阻力)时, $ {f_2} $频率选择特性存在; 当μ = 0(无压力)时, $ {f_2} $频率选择特性消失, 因此淋巴液可能是通过在静纤毛间产生压强的方式来调节毛束的频率特性的. 另外, 盖膜剪切荷载频率越高, 静纤毛轴弯曲越明显, 发束内外域的压强差也越大.
    Explanation of cochlear active acoustic amplification mechanism has been an unsolved medical problem. This mechanism is closely related to the motion of the stereocilia at the top of the outer hair cells in the cochlea. The motion of stereocilia is regulated by the tip-link tension and the fluid force of the lymph fluid. Therefore, studying the tip-link tension during the motion of stereocilia is an important part of the explanation of the cochlea's active sensory sound amplification mechanism. Most of previous studies regarded the stereocilia as rigid bodies, and ignored the influence of shaft bending when studying the mechanical properties of hair bundle. Most of the researches on elastic stereocilia used the finite element simulation, or simplified the model by ignoring the fluid-solid coupling with lymph fluid, or considered only static loading. Based on the Poiseuille flow combined with the distributed parameter model, the analytical solution of the elastic motion of stereocilia is derived in this work. The dynamic response of the stereocilia under the shear force of the tectorial membrane and the change law of tip-link tension are studied. The shaft bending produces a nonlinear accumulation of displacement at the height of the stereocilia. The higher the stereocilia, the more obvious the accumulation effect is. Under the action of dynamic load, the shaft bending contributes most to the displacement response in the tall stereocilium, and this contribution is easily affected by frequency change. Under low frequency load, the displacement response of tall stereocilium comes mainly from the root deflection. At high frequency, the shaft bending increases significantly, and the displacement response is produced by the combination of shaft bending and root deflection. The change of F-actin content in the cochlea exposed to noise would affect the stereocilia stiffness. In this paper, it is found that the decrease of stereociliary Young's modulus will increase the peak value of normalized tension and reduce its peak frequency, and the amplitude of normalized tension will increase under the low frequency shear load. Since the tip-link is connected to an ion channel, the change of normalized tension will affect the probability of ion channels opening, change the ability of cochlea to perceive the sound of corresponding frequency, and then affect the frequency selectivity of hair bundle. Therefore, previous studies of stereocilia regarded as rigid bodies underestimated the response of the cochlea to low-frequency acoustic signals. This model accurately describes the law of tip-link tension and provides a corresponding theoretical explanation for hearing impairment caused by noise environment. Previous experiments have shown that the lymphatic viscous resistance has little effect on the deflection of stereocilia. In this paper, when the viscous resistance is ignored, the tip-link tension changes very little, and when the pressure between the stereocilia is ignored, the tip-link tension changes significantly and the resonance peak of $ {f_2} $ disappears. Therefore, lymphatic fluid regulates the resonance properties of the tip-link tension by creating the pressure between the stereocilia. The presence of lymphatics is essential for generating the frequency characteristics of the hair bundle. In the low frequency domain, the motion of stereocilia is regulated mainly by tip-link, and in the high frequency domain, it is regulated mainly by lymphatic pressure.
      通信作者: 姚文娟, wjyao@shu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 11932010)资助的课题
      Corresponding author: Yao Wen-Juan, wjyao@shu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11932010)
    [1]

    Colantonio J R, Vermot J, Wu D, Langenbacher A D, Fraser S, Chen J N, Hill K L 2009 Nature 457 205Google Scholar

    [2]

    Pickles J O, Comis S D, Osborne M P 1984 Hearing Res. 15 103Google Scholar

    [3]

    Auer M, Koster A, Ziese U, Bajaj C, Volkmann N, Wang D, Hudspeth A 2008 J. Assoc. Res. Otolaryngol. 9 215Google Scholar

    [4]

    Assad J A, Shepherd G M, Corey D P 1991 Neuron 7 985Google Scholar

    [5]

    Tobin M, Chaiyasitdhi A, Michel V, Michalski N, Martin P 2019 eLife 8 e43473Google Scholar

    [6]

    Maoiléidigh D Ó, Jülicher F 2010 J. Acoust. Soc. Am. 128 1175Google Scholar

    [7]

    Fettiplace R, Crawford A C Evans M G 1992 Ann. N. Y. Acad. Sci. 656 1Google Scholar

    [8]

    Beurg M, Fettiplace R, Nam J H, Ricci A J 2009 Nat. Neurosci. 12 553Google Scholar

    [9]

    Furness D N, Hackney C M, Evans M G 2010 J. Physiol. 588 765Google Scholar

    [10]

    Park J, Wei G W 2013 J. Comput. Neurosci. 35 231Google Scholar

    [11]

    Jaramillo F, Hudspeth A J 1993 PNAS 90 1330Google Scholar

    [12]

    Lim K, Park S 2009 J. Biomech. 42 2158Google Scholar

    [13]

    Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie P 2000 PNAS 97 13336Google Scholar

    [14]

    Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek E M, Milligan R A 2007 Nature 449 87Google Scholar

    [15]

    Ge J P, Elferich J, Goehring A, Zhao J, Gouaux E 2018 eLife 7 e38770Google Scholar

    [16]

    Richardson G P, Petit C 2019 Cold Spring Harbor Perspect. Med. 9 a033142Google Scholar

    [17]

    Dionne G, Qiu X F, Rapp M, Liang X P, Zhao B, Peng G H, Katsamba P S, Ahlsen G, Rubinstein R, Potter C S, Carragher B, Honig B, Müller U, Shapiro L 2018 Neuron 99 480Google Scholar

    [18]

    Bartsch T F, Hengel F E, Oswald A, Dionne G, Chipendo I V, Mangat S S, El Shatanofy M, Shapiro L, Müller U, Hudspeth A J 2019 PNAS 116 11048Google Scholar

    [19]

    Duncan R K, Grant J W 1997 Hearing Res. 104 15Google Scholar

    [20]

    Cotton J, Grant W 2004 Hearing Res. 197 96Google Scholar

    [21]

    Cotton J, Grant W 2004 Hearing Res. 197 105Google Scholar

    [22]

    Nam J H, Cotton J R, Grant J W 2005 J. Vestib. Res. 15 263Google Scholar

    [23]

    Tilney L G, Tilney M S 1986 Hearing Res. 22 55Google Scholar

    [24]

    You L, Cowin S C, Schaffler M B, Weinbaum S 2001 J. Biomech. 34 1375Google Scholar

    [25]

    Han Y F, Cowin S C, Schaffler M B, Weinbaum S 2004 PNAS 101 16689Google Scholar

    [26]

    Lin H W, Schneider M E, Kachar B 2005 Curr. Opin. Cell Biol. 17 55Google Scholar

    [27]

    Hackney C M, Furness D N 1995 Am. J. Physiol. 268 1Google Scholar

    [28]

    Strelioff D, Flock A 1984 Hearing Res. 15 19Google Scholar

    [29]

    Furness D N, Zetes D E, Hackney C M 1997 Proc. Biol. Sci. 264 45Google Scholar

    [30]

    Gittes F, Mickey B, Nettleton J, Howard J 1993 J. Cell Biol. 120 923Google Scholar

    [31]

    Howard J, Hudspeth A J 1988 Neuron 1 189Google Scholar

    [32]

    Tsuprun V, Santi P 2002 J. Histochem. Cytochem. 50 493Google Scholar

    [33]

    Flock Å, Strelioff D 1984 Nature 310 597Google Scholar

    [34]

    Szymko Y M, Dimitri P S, Saunders J C 1992 Hearing Res. 59 241Google Scholar

    [35]

    Fridberger A, Tomo I, Ulfendahl M, Monvel J B 2006 PNAS 103 1918Google Scholar

    [36]

    Vlajkovic S M, Housley G D, Muñoz D J B, Robson S C, Sévigny J, Wang C J H, Thorne P R 2004 Neuroscience 126 763Google Scholar

    [37]

    Avinash G B, Nuttall A L, Raphael Y 1993 Hearing Res. 67 139Google Scholar

    [38]

    Murakoshi M, Yoshida N, Kitsunai Y, Iida K, Kumano S, Suzuki T, Kobayashi T, Wada H 2006 Brain Res. 1107 121Google Scholar

    [39]

    Kondrachuk A V 2006 Adv. Space Res. 38 1052Google Scholar

    [40]

    Kozlov A S, Baumgart J, Risler T, Versteegh C P, Hudspeth A J 2011 Nature 474 376Google Scholar

    [41]

    Verpy E, Leibovici M, Michalski N, Goodyear R J, Houdon C, Weil D, Richardson G P, Petit C 2011 J. Comp. Neurol. 519 194Google Scholar

  • 图 1  发束理论模型示意图

    Fig. 1.  Schematic diagram of theoretical model of hair bundle.

    图 2  单根静纤毛根部转角计算模型

    Fig. 2.  Calculation model of root rotation angle of a single stereocilia.

    图 3  发束横断面图 (a)压力分布的位置; (b)相邻立体纤毛之间的淋巴流线

    Fig. 3.  Top view of hair bundle: (a) The position of the pressure distribution; (b) lymphatic streamlines between adjacent stereocilia.

    图 4  单根静纤毛刚度

    Fig. 4.  Stiffness of single stereocilium.

    图 5  静纤毛顶端位移比随频率的变化曲线

    Fig. 5.  Variation curve of displacement ratio of the top of stereocilia with frequency.

    图 6  不同杨氏模量下tip-link归一化张力随频率的变化曲线 (a)$ {f_1} $; (b) $ {f_2} $

    Fig. 6.  Variation curves of tip-link normalized tension with frequency under different Young's modulus: (a) f1; (b) f2.

    图 7  不同流体作用方式下归一化张力随频率的变化曲线 (a)$ {f_1} $; (b)$ {f_2} $

    Fig. 7.  Variation curve of normalized tension with frequency under different fluid action modes: (a)$ {f_1} $; (b) $ {f_2} $.

    图 8  A和B处的压强 (a) A和B在发束中的位置; (b) A和B处压强随频率的变化曲线

    Fig. 8.  The pressure at A and B: (a) The position of A and B in the hair bundle; (b) the variation curve of pressure at A and B.

    表 1  模型参数

    Table 1.  Model parameters.

    参数名称参数值
    静纤毛高度($l_1 $, $l_2 $, $l_3 $)/μm6.0, 2.8, 1.4
    静纤毛底圆锥高度($l_{{\rm{a}}1} $, $l_{{\rm{a}}2} $, $l_{{\rm{a}}3} $)/μm1.6, 1.0, 0.6
    高, 中静纤毛侧壁上tip-link
    连接点高度($l_{{\rm{t}}1} $, $l_{{\rm{t}}2} $)/μm
    3.0, 1.6
    圆柱体半径(r)/nm150
    圆锥最小半径(ra)/nm60
    相邻静纤毛间距(h0)/nm50
    静纤毛体均布质量(m)/(kg·m–1)8.48 × 10–11
    静纤毛杨氏模量(E)/GPa1.2
    淋巴液粘度系数(c = μ)/(Pa·s)6.59 × 10–4
    tip-link轴与水平面夹角(β1 = β2)π/4
    tip-link弹性常数(ktip1 = ktip2)/(N·m–1)5.3 × 10–4
    下载: 导出CSV

    表 2  静刚度的实验值与解析值

    Table 2.  Experimental value and analytical value of static stiffness

    实验值静刚度/
    (10–4 N·m–1)
    本模型计算的静
    刚度/(10–4 N·m–1)
    Flock and Strelioff[33] (1984)7.8 ± 2.26.25
    Szymko et al.[34] (1992)5.04 ± 2.68
    下载: 导出CSV
  • [1]

    Colantonio J R, Vermot J, Wu D, Langenbacher A D, Fraser S, Chen J N, Hill K L 2009 Nature 457 205Google Scholar

    [2]

    Pickles J O, Comis S D, Osborne M P 1984 Hearing Res. 15 103Google Scholar

    [3]

    Auer M, Koster A, Ziese U, Bajaj C, Volkmann N, Wang D, Hudspeth A 2008 J. Assoc. Res. Otolaryngol. 9 215Google Scholar

    [4]

    Assad J A, Shepherd G M, Corey D P 1991 Neuron 7 985Google Scholar

    [5]

    Tobin M, Chaiyasitdhi A, Michel V, Michalski N, Martin P 2019 eLife 8 e43473Google Scholar

    [6]

    Maoiléidigh D Ó, Jülicher F 2010 J. Acoust. Soc. Am. 128 1175Google Scholar

    [7]

    Fettiplace R, Crawford A C Evans M G 1992 Ann. N. Y. Acad. Sci. 656 1Google Scholar

    [8]

    Beurg M, Fettiplace R, Nam J H, Ricci A J 2009 Nat. Neurosci. 12 553Google Scholar

    [9]

    Furness D N, Hackney C M, Evans M G 2010 J. Physiol. 588 765Google Scholar

    [10]

    Park J, Wei G W 2013 J. Comput. Neurosci. 35 231Google Scholar

    [11]

    Jaramillo F, Hudspeth A J 1993 PNAS 90 1330Google Scholar

    [12]

    Lim K, Park S 2009 J. Biomech. 42 2158Google Scholar

    [13]

    Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie P 2000 PNAS 97 13336Google Scholar

    [14]

    Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek E M, Milligan R A 2007 Nature 449 87Google Scholar

    [15]

    Ge J P, Elferich J, Goehring A, Zhao J, Gouaux E 2018 eLife 7 e38770Google Scholar

    [16]

    Richardson G P, Petit C 2019 Cold Spring Harbor Perspect. Med. 9 a033142Google Scholar

    [17]

    Dionne G, Qiu X F, Rapp M, Liang X P, Zhao B, Peng G H, Katsamba P S, Ahlsen G, Rubinstein R, Potter C S, Carragher B, Honig B, Müller U, Shapiro L 2018 Neuron 99 480Google Scholar

    [18]

    Bartsch T F, Hengel F E, Oswald A, Dionne G, Chipendo I V, Mangat S S, El Shatanofy M, Shapiro L, Müller U, Hudspeth A J 2019 PNAS 116 11048Google Scholar

    [19]

    Duncan R K, Grant J W 1997 Hearing Res. 104 15Google Scholar

    [20]

    Cotton J, Grant W 2004 Hearing Res. 197 96Google Scholar

    [21]

    Cotton J, Grant W 2004 Hearing Res. 197 105Google Scholar

    [22]

    Nam J H, Cotton J R, Grant J W 2005 J. Vestib. Res. 15 263Google Scholar

    [23]

    Tilney L G, Tilney M S 1986 Hearing Res. 22 55Google Scholar

    [24]

    You L, Cowin S C, Schaffler M B, Weinbaum S 2001 J. Biomech. 34 1375Google Scholar

    [25]

    Han Y F, Cowin S C, Schaffler M B, Weinbaum S 2004 PNAS 101 16689Google Scholar

    [26]

    Lin H W, Schneider M E, Kachar B 2005 Curr. Opin. Cell Biol. 17 55Google Scholar

    [27]

    Hackney C M, Furness D N 1995 Am. J. Physiol. 268 1Google Scholar

    [28]

    Strelioff D, Flock A 1984 Hearing Res. 15 19Google Scholar

    [29]

    Furness D N, Zetes D E, Hackney C M 1997 Proc. Biol. Sci. 264 45Google Scholar

    [30]

    Gittes F, Mickey B, Nettleton J, Howard J 1993 J. Cell Biol. 120 923Google Scholar

    [31]

    Howard J, Hudspeth A J 1988 Neuron 1 189Google Scholar

    [32]

    Tsuprun V, Santi P 2002 J. Histochem. Cytochem. 50 493Google Scholar

    [33]

    Flock Å, Strelioff D 1984 Nature 310 597Google Scholar

    [34]

    Szymko Y M, Dimitri P S, Saunders J C 1992 Hearing Res. 59 241Google Scholar

    [35]

    Fridberger A, Tomo I, Ulfendahl M, Monvel J B 2006 PNAS 103 1918Google Scholar

    [36]

    Vlajkovic S M, Housley G D, Muñoz D J B, Robson S C, Sévigny J, Wang C J H, Thorne P R 2004 Neuroscience 126 763Google Scholar

    [37]

    Avinash G B, Nuttall A L, Raphael Y 1993 Hearing Res. 67 139Google Scholar

    [38]

    Murakoshi M, Yoshida N, Kitsunai Y, Iida K, Kumano S, Suzuki T, Kobayashi T, Wada H 2006 Brain Res. 1107 121Google Scholar

    [39]

    Kondrachuk A V 2006 Adv. Space Res. 38 1052Google Scholar

    [40]

    Kozlov A S, Baumgart J, Risler T, Versteegh C P, Hudspeth A J 2011 Nature 474 376Google Scholar

    [41]

    Verpy E, Leibovici M, Michalski N, Goodyear R J, Houdon C, Weil D, Richardson G P, Petit C 2011 J. Comp. Neurol. 519 194Google Scholar

  • [1] 徐旭, 马文凯, 姚文娟. 耳蜗中tip-link张力与静纤毛运动动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211105
    [2] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [3] 张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维. 基于磁共振的水下非接触式电能传输系统建模与损耗分析. 物理学报, 2016, 65(4): 048401. doi: 10.7498/aps.65.048401
    [4] 宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌. SOI SiGe HBT结构设计及频率特性研究. 物理学报, 2014, 63(11): 118501. doi: 10.7498/aps.63.118501
    [5] 郝建红, 孙娜燕. 损耗型变形耦合电机系统的混沌参数特性. 物理学报, 2012, 61(15): 150504. doi: 10.7498/aps.61.150504
    [6] 刘丽想, 董丽娟, 刘艳红, 杨成全, 石云龙. 含特异材料的光量子阱频率特性研究. 物理学报, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210
    [7] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [8] 刘丽想, 董丽娟, 刘艳红, 杨春花, 杨成全, 石云龙. 平均折射率为零的光子晶体中缺陷模频率特性的实验研究. 物理学报, 2011, 60(8): 084218. doi: 10.7498/aps.60.084218
    [9] 王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林. Al-O,C元素添加对FeCo合金薄膜磁性和频率特性的影响. 物理学报, 2011, 60(1): 017505. doi: 10.7498/aps.60.017505
    [10] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [11] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [12] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性. 物理学报, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [13] 张晓明, 彭建华, 张入元. 非线性自治系统频率特性及其利用. 物理学报, 2002, 51(11): 2467-2474. doi: 10.7498/aps.51.2467
    [14] 刘颖力, 张怀武, 王豪才, 钟智勇. 多层周期薄膜中静磁表面波宽度模色散特性研究. 物理学报, 1999, 48(13): 98-104. doi: 10.7498/aps.48.98
    [15] 武保剑, 刘公强. 斜向磁化的YIG波导中静磁波传播特性. 物理学报, 1999, 48(13): 286-290. doi: 10.7498/aps.48.286
    [16] 刘公强, Chen S.Tsai. 斜向静磁场中的薄膜磁光效应和静磁波传播特性. 物理学报, 1998, 47(6): 997-1005. doi: 10.7498/aps.47.997
    [17] 王嘉赋, 刘锋, 王均义, 陈光, 王炜. 随机共振系统输入阈值的频率特性. 物理学报, 1997, 46(12): 2305-2312. doi: 10.7498/aps.46.2305
    [18] 王奇, 鲍家善, 蔡英时, A. D. BOARDMAN. 非线性静磁表面波的传播特性. 物理学报, 1993, 42(12): 2005-2013. doi: 10.7498/aps.42.2005
    [19] 张春平;于风崎;张光寅. 分形体生长规律的透射光谱研究. 物理学报, 1989, 38(8): 1334-1338. doi: 10.7498/aps.38.1334
    [20] 张鹏翔, 曹克定. 静磁波法研究材料的磁性. 物理学报, 1985, 34(11): 1407-1412. doi: 10.7498/aps.34.1407
计量
  • 文章访问数:  4622
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-10-23
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-02-20

/

返回文章
返回