搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层单晶石墨烯与柔性基底界面性能的实验研究

仇巍 张启鹏 李秋 许超宸 郭建刚

引用本文:
Citation:

单层单晶石墨烯与柔性基底界面性能的实验研究

仇巍, 张启鹏, 李秋, 许超宸, 郭建刚

Experimental study on interfacial mechanical behavior of single-layer monocrystalline graphene on a stretchable substrate

Qiu Wei, Zhang Qi-Peng, Li Qiu, Xu Chao-Chen, Guo Jian-Gang
PDF
导出引用
  • 单晶石墨烯具有更优异的力学及电学性能,有望成为新一代柔性电子器件的核心材料.因此,有必要从实验的角度精细分析化学气相沉积法制得的大尺度单晶石墨烯与柔性基底复合结构的界面力学行为.本文通过显微拉曼光谱实验方法测量了不同长度的单层单晶石墨烯/PET(聚对苯二甲酸乙二醇酯)基底的界面力学性能参数及其在长度方向上界面边缘的尺度效应.实验给出了石墨烯在PET基底加载过程中与基底间黏附、滑移、脱黏三个界面状态的演化过程与应力分布规律.实验发现,单晶石墨烯与柔性基底间由范德瓦耳斯力控制的界面应变传递过程存在明显的边缘效应,并且与石墨烯的长度有关.界面的切应力具有尺度效应,其值随石墨烯长度的增加而减小,而石墨烯界面传递最大应变以及界面脱黏极限则不受试件尺度的影响.
    Monocrystalline graphene is expected to become a core material for the next-generation flexible electronic device, owing to its superior mechanical and electrical properties. Therefore, it is essential to analyze the interfacial mechanical property of the composite structure composed of large-scale monocrystalline graphene, prepared by chemical vapor deposition (CVD), and flexible substrate in experiment. Recent years, micro-Raman spectroscopy has become a useful method of micro/nano-mechanics for the experimental investigations on the properties of low-dimensional nanomaterials, such as carbon nanotube (CNT), graphene, molybdenum disulfide (MoS2). Especially, Raman spectroscopy is effectively applied to the investigations on the mechanical behaviors of the interfaces between graphene films and flexible substrates. Among these researches, most of the measured samples are small-scale monocrystalline graphene films which are mechanically exfoliated from highly oriented pyrolytic graphite, a few ones are the large-scale single-layer polycrystalline graphene films prepared by CVD. There is still lack of study of the large-scale single-layer monocrystalline graphene. In this work, micro-Raman spectroscopy is used to quantitatively characterize the behavior of interface between single-layer monocrystalline graphene film prepared by CVD and polyethylene terephthalate (PET) substrate under uniaxial tensile loading. At each loading step from 0 to 2.5% tensile strain on the substrate, the in-plane stress distribution of the graphene is measured directly by using Raman spectroscopy. The interfacial shear stress at the graphene/PET interface is then achieved. The experimental result exhibits that during the whole process of uniaxial tensile loading on the PET substrate, the evolution of the graphene/PET interface includes three states (adhesion, sliding and debonding). Based on these results, the classical shear-lag model is introduced to analyze the interfacial stress transfer from the flexible substrate to the single-layer graphene film. By fitting the experimental data, several mechanical parameters are identified, including the interface strength, the interface stiffness and the interface fracture toughness. The Raman measurements and result analyses are carried out on the samples whose single-layer graphene films have different lengths. It is shown that the stress transfer at the graphene/PET interface controlled by the van der Waals force has obvious scale effect compared with the graphene length. The interface strength, viz. the maximum of the interfacial shear stress, decreases with the increase of the graphene length. While the graphene length has no effect on the debonding strain or the strain transfer limit of graphene/PET interface. Combining with other previous studies of the large-scale single-layer graphene shows that the mechanical parameters of the interface between graphene and flexible substrate have no relation no matter whether the graphene is monocrystalline or polycrystalline.
      通信作者: 郭建刚, guojg@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11422219,11672203,11372216,11472070)资助的课题.
      Corresponding author: Guo Jian-Gang, guojg@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11422219, 11672203, 11372216, 11472070).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald A H, Rotenberg E 2010 Science 328 999

    [3]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extreme Mech. Lett. 13 42

    [4]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y Ⅱ, Kim Y J, Kim K S,Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [5]

    Won S, Hwangbo Y, Lee S K, Kim K S, Kim K S, Lee S M, Lee H J, Ahn J H, Kim J H, Lee S B 2014 Nanoscale 6 6057

    [6]

    Raju A P A, Lewis A, Derby B, Young R J, Kinloch I A, Zan R, Novoselov K S 2014 Adv. Funct. Mater. 24 2865

    [7]

    Xu C C, Xue T, Guo J G, Kang Y L, Qiu W, Song H B, Xie H M 2015 Mater. Lett. 161 755

    [8]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [9]

    Zhang T, Li X Y, Gao H J 2015 Int. J. Fract. 196 1

    [10]

    Han J L, Zeng M Q, Zhang T, Fu L 2015 Chin. Sci. Bull. 60 2091(in Chinese)[韩江丽, 曾梦琪, 张涛, 付磊2015科学通报60 2091]

    [11]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

    [12]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [13]

    Xiong W, Zhou Y S, Jiang L J, Sarjar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F 2013 Adv. Mater. 25 630

    [14]

    Song Y N, Pan D Y, Cheng Y, Wang P, Zhao P, Wang H T 2015 Carbon 95 1027

    [15]

    Cheng Y, Song Y N, Zhao D C, Zhang X W, Yin S Q, Wang P, Wang M, Xia Y, Maruyama S, Zhao P, Wang H T 2016 Chem. Mater. 28 2165

    [16]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [17]

    Cen H, Kang Y L, Lei Z K, Qin Q H, Qiu W 2006 Compos. Struct. 75 532

    [18]

    Li X, Peng Y 2006 Appl. Phys. Lett. 89 234104

    [19]

    Li X D, Tao G, Yang Y Z 2001 Opt. Laser Technol. 33 53

    [20]

    Li X D, Wei C, Yang Y 2005 Opt. Laser Eng. 43 869

    [21]

    Zhang Q C, Jiang Z Y, Jiang H F, Chen Z J, Wu X P 2005 Int. J. Plastic. 21 2150

    [22]

    Wang M, Hu X F, Wu X P 2006 Mater. Res. Bull. 41 1949

    [23]

    Xu F, Li Y, Hu X, Niu Y, Zhao J, Zhang Z 2012 Mater. Lett. 67 162

    [24]

    Jiang H F, Zhang Q C, Chen X D, Chen Z J, Jiang Z Y, Wu X P, Fan J H 2007 Acta Mater. 55 2219

    [25]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R, Novoselov K S 2010 Adv. Mater. 22 2694

    [26]

    Young R J, Gong L, Kinloch I A, Riaz I, Jalil R, Novoselov K S 2011 ACS Nano 5 3079

    [27]

    Jiang T, Huang R, Zhu Y 2014 Adv. Funct. Mater. 24 396

    [28]

    Dai Z H, Wang G R, Liu L Q, Hou Y, Wei Y G, Zhang Z 2016 Compos. Sci. Technol. 1 136

    [29]

    Xu C C, Xue T, Guo J G, Qin Q H, Wu S, Song H B, Xie H M 2015 J. Appl. Phys. 117 164301

    [30]

    Xu C C, Xue T, Qiu W, Kang Y L 2016 ACS Appl. Mat. Interfaces 8 27099

    [31]

    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J, Swan A K, Golderg B B, Ruoff R S 2011 ACS Nano 5 6919

    [32]

    Kang Y L, Zhang Z F, Wang H W, Qin Q H 2005 Mat. Sci. Eng. A:Struct. 394 312

    [33]

    Zhang Z F, Kang Y L, Wang H W, Qin Q H, Qiu Y, Li X Q 2006 Measurement 39 710

    [34]

    Ferrari A C, Basko D M 2013 Nature Nanotech. 8 235

    [35]

    Tanaka M, Young R J 2006 J. Mater. Sci. 41 963

    [36]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [37]

    Sakata H, Dresselhaus G, Dresselhaus M S, Endo M 1988 J. Appl. Phys. 63 2769

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [39]

    Yu T, Ni Z H, Du C L, You Y M, Wang Y Y, Shen Z X 2008 J. Phys. Chem. C 33 12602

    [40]

    Guo G D, Zhu Y 2015 J. Appl. Mech. 82 031005

    [41]

    Cong C X, Yu T, Wang H M 2010 ACS Nano 6 3175

    [42]

    Sasaki K, Sato K, Saito R, Jiang J, Onari S, Tanaka Y 2007 Phys. Rev. B 75 235430

    [43]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald A H, Rotenberg E 2010 Science 328 999

    [3]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extreme Mech. Lett. 13 42

    [4]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y Ⅱ, Kim Y J, Kim K S,Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [5]

    Won S, Hwangbo Y, Lee S K, Kim K S, Kim K S, Lee S M, Lee H J, Ahn J H, Kim J H, Lee S B 2014 Nanoscale 6 6057

    [6]

    Raju A P A, Lewis A, Derby B, Young R J, Kinloch I A, Zan R, Novoselov K S 2014 Adv. Funct. Mater. 24 2865

    [7]

    Xu C C, Xue T, Guo J G, Kang Y L, Qiu W, Song H B, Xie H M 2015 Mater. Lett. 161 755

    [8]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [9]

    Zhang T, Li X Y, Gao H J 2015 Int. J. Fract. 196 1

    [10]

    Han J L, Zeng M Q, Zhang T, Fu L 2015 Chin. Sci. Bull. 60 2091(in Chinese)[韩江丽, 曾梦琪, 张涛, 付磊2015科学通报60 2091]

    [11]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

    [12]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [13]

    Xiong W, Zhou Y S, Jiang L J, Sarjar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F 2013 Adv. Mater. 25 630

    [14]

    Song Y N, Pan D Y, Cheng Y, Wang P, Zhao P, Wang H T 2015 Carbon 95 1027

    [15]

    Cheng Y, Song Y N, Zhao D C, Zhang X W, Yin S Q, Wang P, Wang M, Xia Y, Maruyama S, Zhao P, Wang H T 2016 Chem. Mater. 28 2165

    [16]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [17]

    Cen H, Kang Y L, Lei Z K, Qin Q H, Qiu W 2006 Compos. Struct. 75 532

    [18]

    Li X, Peng Y 2006 Appl. Phys. Lett. 89 234104

    [19]

    Li X D, Tao G, Yang Y Z 2001 Opt. Laser Technol. 33 53

    [20]

    Li X D, Wei C, Yang Y 2005 Opt. Laser Eng. 43 869

    [21]

    Zhang Q C, Jiang Z Y, Jiang H F, Chen Z J, Wu X P 2005 Int. J. Plastic. 21 2150

    [22]

    Wang M, Hu X F, Wu X P 2006 Mater. Res. Bull. 41 1949

    [23]

    Xu F, Li Y, Hu X, Niu Y, Zhao J, Zhang Z 2012 Mater. Lett. 67 162

    [24]

    Jiang H F, Zhang Q C, Chen X D, Chen Z J, Jiang Z Y, Wu X P, Fan J H 2007 Acta Mater. 55 2219

    [25]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R, Novoselov K S 2010 Adv. Mater. 22 2694

    [26]

    Young R J, Gong L, Kinloch I A, Riaz I, Jalil R, Novoselov K S 2011 ACS Nano 5 3079

    [27]

    Jiang T, Huang R, Zhu Y 2014 Adv. Funct. Mater. 24 396

    [28]

    Dai Z H, Wang G R, Liu L Q, Hou Y, Wei Y G, Zhang Z 2016 Compos. Sci. Technol. 1 136

    [29]

    Xu C C, Xue T, Guo J G, Qin Q H, Wu S, Song H B, Xie H M 2015 J. Appl. Phys. 117 164301

    [30]

    Xu C C, Xue T, Qiu W, Kang Y L 2016 ACS Appl. Mat. Interfaces 8 27099

    [31]

    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J, Swan A K, Golderg B B, Ruoff R S 2011 ACS Nano 5 6919

    [32]

    Kang Y L, Zhang Z F, Wang H W, Qin Q H 2005 Mat. Sci. Eng. A:Struct. 394 312

    [33]

    Zhang Z F, Kang Y L, Wang H W, Qin Q H, Qiu Y, Li X Q 2006 Measurement 39 710

    [34]

    Ferrari A C, Basko D M 2013 Nature Nanotech. 8 235

    [35]

    Tanaka M, Young R J 2006 J. Mater. Sci. 41 963

    [36]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [37]

    Sakata H, Dresselhaus G, Dresselhaus M S, Endo M 1988 J. Appl. Phys. 63 2769

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [39]

    Yu T, Ni Z H, Du C L, You Y M, Wang Y Y, Shen Z X 2008 J. Phys. Chem. C 33 12602

    [40]

    Guo G D, Zhu Y 2015 J. Appl. Mech. 82 031005

    [41]

    Cong C X, Yu T, Wang H M 2010 ACS Nano 6 3175

    [42]

    Sasaki K, Sato K, Saito R, Jiang J, Onari S, Tanaka Y 2007 Phys. Rev. B 75 235430

    [43]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [3] 张福建, 陈悦, 高翔, 刘珍, 张忠强. 楔形铜基底-单层石墨烯覆层表面液滴自驱动研究. 物理学报, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [4] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [7] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [8] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [9] 高庆国, 田猛串, 李思超, 李学飞, 吴燕庆. 基于毫米级单晶石墨烯的倍频器性能研究. 物理学报, 2017, 66(21): 217305. doi: 10.7498/aps.66.217305
    [10] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [11] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [12] 彭琎, 陈广琦, 宋宜驰, 谷坤明, 汤皎宁. 聚酰亚胺柔性基底上磁控溅射金属铜膜的电学性能研究. 物理学报, 2014, 63(13): 138101. doi: 10.7498/aps.63.138101
    [13] 张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐. Bi2ZnOB2O6单晶偏振拉曼光谱. 物理学报, 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [14] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [15] 吕兆承, 李广. 热磁预处理对Ni-Mn-Ga单晶磁学和力学性能的影响. 物理学报, 2009, 58(4): 2746-2751. doi: 10.7498/aps.58.2746
    [16] 曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈 静, 沈文忠. 分子束外延PbTe单晶薄膜的反常拉曼光谱研究. 物理学报, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [18] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [19] 李宏年, 徐亚伯, 李海洋, 何丕模, 鲍世宁. 单层纳米碳管振动模的拉曼光谱研究. 物理学报, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
    [20] 邓文, 熊良钺, 龙期威, 王淑荷, 郭建亭. B改善单晶和多晶Ni3Al合金力学性能的微观机制. 物理学报, 1994, 43(1): 154-160. doi: 10.7498/aps.43.154
计量
  • 文章访问数:  7234
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-06-09
  • 刊出日期:  2017-08-05

/

返回文章
返回