-
采用熔融-淬火方法制备了Cu2.95GaxSb1-xSe4(x=0,0.01,0.02和0.04)样品,系统地研究了Ga在Sb位掺杂对Cu3SbSe4热电性能的影响.研究结果表明,少量的Ga掺杂(x=0.01)可以有效提高空穴浓度,抑制本征激发,改善样品的电输运性能.掺Ga样品在625 K时功率因子达到最大值10 μW/cm·K2,比未掺Ga的Cu2.95SbSe4样品提高了约一倍.但是随着Ga掺杂浓度的进一步提高,缺陷对载流子的散射增强,同时载流子有效质量增大,导致载流子迁移率急剧下降.因此Ga含量增加反而使样品的电性能恶化.在热输运方面,Ga掺杂可以有效降低双极扩散对热导率的贡献,同时掺杂引入的点缺陷对高频声子有较强的散射作用,因此高温区的热导率明显降低.最终该体系在664 K时获得最大ZT值0.53,比未掺Ga的样品提高了近50%.The Cu3SbSe4 compound is an environmentally friendly and low-cost medium-temperature thermoelectric material, which is featured by its low thermal conductivity. The disadvantage of this compound lies in its intrinsic poor electrical transport property. In order to improve the electrical conductivity of Cu3SbSe4, in this work we are to increase its carrier concentration by one to two orders of magnitude though elemental doping. The sample composition of Cu2.95GaxSb1-xSe4 is designed to increase the hole carrier concentration by introducing Cu vacancies and substituting Ga3+ for Sb5+. The Cu2.95GaxSb1-xSe4 (x=0, 0.01, 0.02 and 0.04) samples are prepared by melting-quench method. The X-ray diffraction analysis indicates that the obtained samples are of single-phase with the tetragonal famatinite structure, and the energy-dispersive X-ray spectroscopy results show that the actual compositions of the samples are very close to their nominal compositions. The effect of Ga doping on the thermoelectric performance of Cu3SbSe4 compound is investigated systematically by electrical and thermal transport property measurements. According to our experimental results, the hole concentration of the sample is efficiently increased by substituting Sb with a small amount of Ga (x=0.01), which can not only substantially improve the electrical conductivity but also suppress the intrinsic excitation of the sample. The maximum power factor reaches 10 μW/cm·K2 at 625 K for the Ga doped sample with x=0.01, which is nearly twice as much as that of the sample free of Ga. Although the carrier concentration further increases with increasing Ga content, the hole mobility decreases dramatically with the Ga content increasing due to the increased hole effective mass and point defect scattering. Thus, the electrical transport properties of the samples deteriorate at higher Ga content, and the maximum power factors for the samples with x=0.02 and 0.04 reach 9 and 8 μW/cm·K2 at 625 K, respectively. The lattice thermal conductivities of the samples basically comply with the T-1 relationship, suggesting the phonon U-process is the dominant scattering mechanism in our samples. For the samples with x=0 and 0.01, the lattice thermal conductivities at high temperature deviate slightly from the T-1 curve due to the presence of intrinsic excitation. However, these deviations are eliminated for the samples with x=0.02 and 0.04 because the bipolar effect is effectively suppressed with the increasing of Ga content. Thus, Ga doping can reduce the bipolar thermal conductivity at high temperature by increasing the hole carrier concentration. Furthermore, the point defects introduced by Ga doping can also enhance the scattering of high-frequency phonons, leading to slightly reduced lattice thermal conductivities of Ga-doped samples at higher temperature. Finally, a maximum ZT value of 0.53 at 664 K is achieved in Ga-doped sample, which is 50% higher than that of the sample free of Ga.
-
Keywords:
- Ga doping /
- Cu3SbSe4 /
- thermoelectric performance
[1] Bell L E 2008 Science 321 1457
[2] DiSalvo F J 1999 Science 285 703
[3] Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
[4] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45
[5] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[6] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[7] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246
[8] Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229
[9] Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334
[10] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634
[11] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
[12] Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713
[13] Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18
[14] Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029
[15] Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677
[16] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818
[17] Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726
[18] Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356
[19] Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527
[20] Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450
[21] Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346
[22] Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D:Appl. Phys. 44 295404
[23] Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105
[24] Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888
[25] Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592
[26] Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399
[27] Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150
[28] Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229
[29] Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528
[30] Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869
[31] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[32] Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19
[33] May A F, Toberer E S, Saramat A, Snyder G J 2009 Phys. Rev. B 80 125205
[34] Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506
[35] Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306
-
[1] Bell L E 2008 Science 321 1457
[2] DiSalvo F J 1999 Science 285 703
[3] Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
[4] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45
[5] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[6] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[7] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246
[8] Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229
[9] Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334
[10] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634
[11] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
[12] Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713
[13] Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18
[14] Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029
[15] Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677
[16] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818
[17] Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726
[18] Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356
[19] Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527
[20] Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450
[21] Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346
[22] Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D:Appl. Phys. 44 295404
[23] Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105
[24] Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888
[25] Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592
[26] Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399
[27] Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150
[28] Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229
[29] Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528
[30] Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869
[31] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[32] Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19
[33] May A F, Toberer E S, Saramat A, Snyder G J 2009 Phys. Rev. B 80 125205
[34] Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506
[35] Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306
计量
- 文章访问数: 5583
- PDF下载量: 280
- 被引次数: 0