搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga掺杂对Cu3SbSe4热电性能的影响

陈萝娜 刘叶烽 张继业 杨炯 邢娟娟 骆军 张文清

引用本文:
Citation:

Ga掺杂对Cu3SbSe4热电性能的影响

陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清

Effect of Ga doping on the thermoelectric performance of Cu3SbSe4

Chen Luo-Na, Liu Ye-Feng, Zhang Ji-Ye, Yang Jiong, Xing Juan-Juan, Luo Jun, Zhang Wen-Qing
PDF
导出引用
  • 采用熔融-淬火方法制备了Cu2.95GaxSb1-xSe4(x=0,0.01,0.02和0.04)样品,系统地研究了Ga在Sb位掺杂对Cu3SbSe4热电性能的影响.研究结果表明,少量的Ga掺杂(x=0.01)可以有效提高空穴浓度,抑制本征激发,改善样品的电输运性能.掺Ga样品在625 K时功率因子达到最大值10 μW/cm·K2,比未掺Ga的Cu2.95SbSe4样品提高了约一倍.但是随着Ga掺杂浓度的进一步提高,缺陷对载流子的散射增强,同时载流子有效质量增大,导致载流子迁移率急剧下降.因此Ga含量增加反而使样品的电性能恶化.在热输运方面,Ga掺杂可以有效降低双极扩散对热导率的贡献,同时掺杂引入的点缺陷对高频声子有较强的散射作用,因此高温区的热导率明显降低.最终该体系在664 K时获得最大ZT值0.53,比未掺Ga的样品提高了近50%.
    The Cu3SbSe4 compound is an environmentally friendly and low-cost medium-temperature thermoelectric material, which is featured by its low thermal conductivity. The disadvantage of this compound lies in its intrinsic poor electrical transport property. In order to improve the electrical conductivity of Cu3SbSe4, in this work we are to increase its carrier concentration by one to two orders of magnitude though elemental doping. The sample composition of Cu2.95GaxSb1-xSe4 is designed to increase the hole carrier concentration by introducing Cu vacancies and substituting Ga3+ for Sb5+. The Cu2.95GaxSb1-xSe4 (x=0, 0.01, 0.02 and 0.04) samples are prepared by melting-quench method. The X-ray diffraction analysis indicates that the obtained samples are of single-phase with the tetragonal famatinite structure, and the energy-dispersive X-ray spectroscopy results show that the actual compositions of the samples are very close to their nominal compositions. The effect of Ga doping on the thermoelectric performance of Cu3SbSe4 compound is investigated systematically by electrical and thermal transport property measurements. According to our experimental results, the hole concentration of the sample is efficiently increased by substituting Sb with a small amount of Ga (x=0.01), which can not only substantially improve the electrical conductivity but also suppress the intrinsic excitation of the sample. The maximum power factor reaches 10 μW/cm·K2 at 625 K for the Ga doped sample with x=0.01, which is nearly twice as much as that of the sample free of Ga. Although the carrier concentration further increases with increasing Ga content, the hole mobility decreases dramatically with the Ga content increasing due to the increased hole effective mass and point defect scattering. Thus, the electrical transport properties of the samples deteriorate at higher Ga content, and the maximum power factors for the samples with x=0.02 and 0.04 reach 9 and 8 μW/cm·K2 at 625 K, respectively. The lattice thermal conductivities of the samples basically comply with the T-1 relationship, suggesting the phonon U-process is the dominant scattering mechanism in our samples. For the samples with x=0 and 0.01, the lattice thermal conductivities at high temperature deviate slightly from the T-1 curve due to the presence of intrinsic excitation. However, these deviations are eliminated for the samples with x=0.02 and 0.04 because the bipolar effect is effectively suppressed with the increasing of Ga content. Thus, Ga doping can reduce the bipolar thermal conductivity at high temperature by increasing the hole carrier concentration. Furthermore, the point defects introduced by Ga doping can also enhance the scattering of high-frequency phonons, leading to slightly reduced lattice thermal conductivities of Ga-doped samples at higher temperature. Finally, a maximum ZT value of 0.53 at 664 K is achieved in Ga-doped sample, which is 50% higher than that of the sample free of Ga.
    [1]

    Bell L E 2008 Science 321 1457

    [2]

    DiSalvo F J 1999 Science 285 703

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45

    [5]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [6]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [7]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246

    [8]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [9]

    Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334

    [10]

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634

    [11]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [12]

    Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713

    [13]

    Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18

    [14]

    Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029

    [15]

    Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677

    [16]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818

    [17]

    Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726

    [18]

    Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356

    [19]

    Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527

    [20]

    Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450

    [21]

    Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346

    [22]

    Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D:Appl. Phys. 44 295404

    [23]

    Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105

    [24]

    Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888

    [25]

    Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592

    [26]

    Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399

    [27]

    Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150

    [28]

    Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229

    [29]

    Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528

    [30]

    Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869

    [31]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [32]

    Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19

    [33]

    May A F, Toberer E S, Saramat A, Snyder G J 2009 Phys. Rev. B 80 125205

    [34]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506

    [35]

    Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306

  • [1]

    Bell L E 2008 Science 321 1457

    [2]

    DiSalvo F J 1999 Science 285 703

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45

    [5]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [6]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [7]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246

    [8]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [9]

    Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334

    [10]

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634

    [11]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [12]

    Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713

    [13]

    Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18

    [14]

    Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029

    [15]

    Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677

    [16]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818

    [17]

    Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726

    [18]

    Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356

    [19]

    Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527

    [20]

    Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450

    [21]

    Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346

    [22]

    Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D:Appl. Phys. 44 295404

    [23]

    Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105

    [24]

    Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888

    [25]

    Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592

    [26]

    Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399

    [27]

    Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150

    [28]

    Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229

    [29]

    Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528

    [30]

    Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869

    [31]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [32]

    Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19

    [33]

    May A F, Toberer E S, Saramat A, Snyder G J 2009 Phys. Rev. B 80 125205

    [34]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506

    [35]

    Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306

  • [1] 刘榕涛, 王晨阳, 黄嘉勉, 罗鹏飞, 刘欣, 叶松, 董子睿, 张继业, 骆军. Sc掺杂Ti1–xNiSb半哈斯勒合金的制备与热电性能. 物理学报, 2023, 72(8): 087201. doi: 10.7498/aps.72.20230035
    [2] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] 李彩云, 何文科, 王东洋, 张潇, 赵立东. 通过插层Cu实现SnSe2的高效热电性能. 物理学报, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [5] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [10] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [11] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [12] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [13] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [14] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响. 物理学报, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [15] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [16] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [17] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [18] 熊 聪, 唐新峰, 祁 琼, 邓书康, 张清杰. Ⅰ型锗基笼合物Ba8Ga16-xSbxGe30的合成及热电性能. 物理学报, 2006, 55(12): 6630-6636. doi: 10.7498/aps.55.6630
    [19] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能. 物理学报, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  5583
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-06-09
  • 刊出日期:  2017-08-05

/

返回文章
返回