搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律

余波

引用本文:
Citation:

Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律

余波

The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound

Yu Bo
PDF
导出引用
  • 采用熔融缓冷技术制备了不同Ag掺杂量的p型Agx(Pb0.5Sn0.5)1-xTe化合物, 系统地研究了Ag掺杂对所得材料的相组成、微结构及其热电传输性能. Ag的掺入显著增加了材料的空穴浓度, 但是材料的空穴浓度远小于Ag作为单电子受主时理论空穴浓度, 且在掺杂量为5%时未出现任何第二相, 这表明Ag在可能进入晶格间隙位置而作为电子施主, 起到补偿作用. 随着Ag掺杂量的增加, 样品的电导率逐渐增加, 而Seebeck系数表现出复杂的变化趋势: 在低于450 K时逐渐增加, 而在温度大于450 K时逐渐降低, 这主要源于材料复杂的价带结构. 由于空穴浓度的优化和重空穴带的主导作用, 1% Ag掺杂样品获得最大的功率因子, 在750 K可达2.1 mWm-1K-2. 此外, Ag的掺入引入的点缺陷大幅散射了传热声子, 使得晶格热导率随着Ag掺量的增加逐渐降低. 结果1% Ag掺杂样品在750 K时获得了最大的热电优值ZT=1.05, 相比未掺样品提高了近50%, 这一数值同商业应用的p型PbTe材料的性能相当. 但是Sn取代显著降低了有毒重金属Pb的用量, 这对PbTe基材料的商业化应用及其环境相适性具有重要意义.
    A series of Ag-doped p-type Agx(Pb0.5Sn0.5)1-xTe compounds is prepared by melting followed by slow-cooling process, and the phase compositions, microstructures and thermoelectric properties are also systematically investigated. The introduction of Ag in Pb/Sn site effectively increases the hole density which is much lower than the theoretically predicated value in the approximation of complete substitution and single acceptor of Ag, in spite of the fact that all samples show finely single phase for the 5% Ag-doped sample. This implies that part of Ag atoms enter into the interstitial sites acting as electron donor to reduce the hole density. With the increase of Ag content, the electrical conductivity increases gradually and the Seebeck coefficient shows an opposite variation tendency, mainly owing to the variation of hole density. Interestingly, the anomalous crossover of Seebeck coefficient at about 450 K indicates the transition of dominating valence valley from light-band to heavy-band while temperature is higher than 450 K. Consequently, due to the optimization of hole density and the domination of heavy band with large effective mass, 1% Ag-doped sample obtains a highest power factor of 2.1 mWm-1K-2 at 750 K, which results in a highest ZT of 1.05 combined with the suppressed lattice thermal conductivity via intensifying point defect phonon scattering. This high ZT is ~ 50% higher than that of Ag-free sample and also higher than commercial p-type PbTe material. Further, the 50% substitution of toxic and heavy Pb by Sn is beneficial for the practical application and environmental sustainability of PbTe-based materials.
    [1]

    Tritt T M, Bottner H, Chen L D 2008 MRS Bull. 33 366

    [2]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章 2001 物理学报 50 1560]

    [3]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [4]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [5]

    Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66

    [6]

    Biswas K, He J Q, Zhang Q C, Wang G Y, Uher C, Dravid V P, Kanatzidis M G 2011 Nature Chem. 3 160

    [7]

    Jaworski C P, Wiendlocha B, Jovovic V, Heremans J P 2011 Energy Environ. Sci. 4 2085

    [8]

    Yadav G G, Susoreny J A, Zhang G Q, Yang H R, Wu Y 2011 Nanoscale 3 3555

    [9]

    Vaqueiro P, Powell A V 2010 J. Mater. Chem. 20 9577

    [10]

    Joffe A F, Stil'bans L S 1959 Rep. Prog. Phys. 22 167

    [11]

    Dimmock J O, Melngailis I, Strauss A J 1966 Phys. Rev. Lett. 16 1193

    [12]

    Arachchige I U, Kanatzidis M G 2009 Nano Lett. 9 1583

    [13]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [14]

    Ravich Y I, Efimova B A, Smirnov I A 1970 Semiconducting Lead Chalcogenides (New York, London: Plenum Press)

    [15]

    Bozin E, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660

    [16]

    Androulakis J, Todorov I, He J Q, Chung D Y, Dravid V, Kanatzidis M G 2011 J. Am. Chem. Soc. 133 10920

    [17]

    Pei Y Z, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [18]

    Pei Y Z, May A F, Snyder G J 2011 Adv. Energy Mater. 1 291

    [19]

    Androulakis J, Lee Y, Todorov I, Chung D Y, Kanatzidis M 2011 Phys. Rev. B 83 195209

    [20]

    Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869

    [21]

    Wang H, Pei Y Z, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [22]

    Wang S Y, Xie W J, Li H, Tang X F 2010 Acta Phys. Sin. 59 605 (in Chinese) [王善禹, 谢文杰, 李涵, 唐新峰 2010 物理学报 59 605]

    [23]

    Du B L, Xu J J, Yan Y G, Tang X F 2011 Acta Phys. Sin. 60 018403 (in Chinese) [杜保立, 徐静静, 鄢永高, 唐新峰 2011 物理学报 60 018403]

  • [1]

    Tritt T M, Bottner H, Chen L D 2008 MRS Bull. 33 366

    [2]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章 2001 物理学报 50 1560]

    [3]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [4]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [5]

    Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66

    [6]

    Biswas K, He J Q, Zhang Q C, Wang G Y, Uher C, Dravid V P, Kanatzidis M G 2011 Nature Chem. 3 160

    [7]

    Jaworski C P, Wiendlocha B, Jovovic V, Heremans J P 2011 Energy Environ. Sci. 4 2085

    [8]

    Yadav G G, Susoreny J A, Zhang G Q, Yang H R, Wu Y 2011 Nanoscale 3 3555

    [9]

    Vaqueiro P, Powell A V 2010 J. Mater. Chem. 20 9577

    [10]

    Joffe A F, Stil'bans L S 1959 Rep. Prog. Phys. 22 167

    [11]

    Dimmock J O, Melngailis I, Strauss A J 1966 Phys. Rev. Lett. 16 1193

    [12]

    Arachchige I U, Kanatzidis M G 2009 Nano Lett. 9 1583

    [13]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [14]

    Ravich Y I, Efimova B A, Smirnov I A 1970 Semiconducting Lead Chalcogenides (New York, London: Plenum Press)

    [15]

    Bozin E, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660

    [16]

    Androulakis J, Todorov I, He J Q, Chung D Y, Dravid V, Kanatzidis M G 2011 J. Am. Chem. Soc. 133 10920

    [17]

    Pei Y Z, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [18]

    Pei Y Z, May A F, Snyder G J 2011 Adv. Energy Mater. 1 291

    [19]

    Androulakis J, Lee Y, Todorov I, Chung D Y, Kanatzidis M 2011 Phys. Rev. B 83 195209

    [20]

    Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869

    [21]

    Wang H, Pei Y Z, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [22]

    Wang S Y, Xie W J, Li H, Tang X F 2010 Acta Phys. Sin. 59 605 (in Chinese) [王善禹, 谢文杰, 李涵, 唐新峰 2010 物理学报 59 605]

    [23]

    Du B L, Xu J J, Yan Y G, Tang X F 2011 Acta Phys. Sin. 60 018403 (in Chinese) [杜保立, 徐静静, 鄢永高, 唐新峰 2011 物理学报 60 018403]

  • [1] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220584
    [2] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [3] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [4] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [5] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [6] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响. 物理学报, 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [7] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [8] 孟代仪, 申兰先, 晒旭霞, 董国俊, 邓书康. Ge掺杂n型Sn基Ⅷ型单晶笼合物的制备及热电传输特性. 物理学报, 2013, 62(24): 247401. doi: 10.7498/aps.62.247401
    [9] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [11] 苏平, 龚敏, 马瑶, 高博, 石瑞英, 陈昶, 史同飞, 曹先存, 孟祥豪, 罗代升. 超薄GaMnAs外延膜空穴浓度和应变弛豫研究. 物理学报, 2011, 60(2): 027105. doi: 10.7498/aps.60.027105
    [12] 周龙, 李涵, 苏贤礼, 唐新峰. In掺杂对n型方钴矿化合物的微结构及热电性能的影响规律. 物理学报, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [13] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性. 物理学报, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [14] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [15] 邓书康, 唐新峰, 张清杰. Zn掺杂p型Ba8Ga16ZnxGe30-x笼合物的合成及热电性能. 物理学报, 2007, 56(8): 4983-4988. doi: 10.7498/aps.56.4983
    [16] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能. 物理学报, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [17] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [18] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [19] 刘桃香, 唐新峰, 李 涵, 宋 晨, 杨秀丽, 张清杰. Sm和Ce复合掺杂Skutterudite化合物的制备及热电性能. 物理学报, 2006, 55(9): 4837-4842. doi: 10.7498/aps.55.4837
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  3599
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-20
  • 修回日期:  2012-05-25
  • 刊出日期:  2012-11-05

Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律

  • 1. 中船重工第七一二研究所, 武汉 430064

摘要: 采用熔融缓冷技术制备了不同Ag掺杂量的p型Agx(Pb0.5Sn0.5)1-xTe化合物, 系统地研究了Ag掺杂对所得材料的相组成、微结构及其热电传输性能. Ag的掺入显著增加了材料的空穴浓度, 但是材料的空穴浓度远小于Ag作为单电子受主时理论空穴浓度, 且在掺杂量为5%时未出现任何第二相, 这表明Ag在可能进入晶格间隙位置而作为电子施主, 起到补偿作用. 随着Ag掺杂量的增加, 样品的电导率逐渐增加, 而Seebeck系数表现出复杂的变化趋势: 在低于450 K时逐渐增加, 而在温度大于450 K时逐渐降低, 这主要源于材料复杂的价带结构. 由于空穴浓度的优化和重空穴带的主导作用, 1% Ag掺杂样品获得最大的功率因子, 在750 K可达2.1 mWm-1K-2. 此外, Ag的掺入引入的点缺陷大幅散射了传热声子, 使得晶格热导率随着Ag掺量的增加逐渐降低. 结果1% Ag掺杂样品在750 K时获得了最大的热电优值ZT=1.05, 相比未掺样品提高了近50%, 这一数值同商业应用的p型PbTe材料的性能相当. 但是Sn取代显著降低了有毒重金属Pb的用量, 这对PbTe基材料的商业化应用及其环境相适性具有重要意义.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回