搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge掺杂n型Sn基Ⅷ型单晶笼合物的制备及热电传输特性

孟代仪 申兰先 晒旭霞 董国俊 邓书康

引用本文:
Citation:

Ge掺杂n型Sn基Ⅷ型单晶笼合物的制备及热电传输特性

孟代仪, 申兰先, 晒旭霞, 董国俊, 邓书康

Growth and thermoelectric properties of Ge doped n-type Sn-based type-Ⅷ single crystalline clathrate

Meng Dai-Yi, Shen Lan-Xian, Shai Xu-Xia, Dong Guo-Jun, Deng Shu-Kang
PDF
导出引用
  • 采用Sn自熔剂法制备了具有n型传导的Ⅷ型Ba8Ga16-xGexSn30 (0 ≤ x ≤ 1.0)单晶笼合物,并对其结构和热电特性进行研究. 研究结果表明:Ge在单晶中的实际含量较少,随着掺杂量的增加样品的晶格常数略有减小,Ge掺杂后样品的载流子浓度较掺杂前低,迁移率增加;所有样品的Seebeck系数均为负值,且绝对值较未掺杂样品低,但Ge掺杂后样品的电导率提高了62%;x=0.5的样品在500 K附近取得最大ZT值1.25.
    Single crystalline samples of type-Ⅷ Ba8Ga16-xGexSn30 (0 ≤ x ≤ 1.0) clathrates are fabricated by the Sn flux method. The structures and thermoelectric properties of the samples at temperatures ranging from 300 to 600 K are studied. Research results show that the actual content of Ge is relatively small in single crystal. The lattice parameters of the samples decrease slightly with the increase of the doping composition of Ge. The Ge doped samples have lower carrier density and higher carrier mobility than undoped samples. The Seebeck coefficients of all the doped samples are negative, and their absolute values are smaller than those of the undoped one. However, the electrical conductivity of the sample is increased by 62% after doping Ge and the sample of x=0.5 obtains a maximum value of ZT (1.25) at about 500 K.
    • 基金项目: 国家自然科学基金(批准号:51262032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51262032).
    [1]

    Slack G A 1995 CRC Handbook of Thermoelectrics CRC

    [2]

    Li H, Tang X F, Zhao W Y, Zhang Q J 2006 Acta Phys. Sin. 55 6506 (in Chinese) [李涵, 唐新峰, 赵文俞, 张清杰 2006 物理学报 55 6506]

    [3]

    Zhao W Y, Wei P, Zhang Q J, Dong C L, Liu L S, Tang X F 2009 J. Am. Chem. Soc. 131 3713

    [4]

    Zhao W Y, Dong C L, Wei P, Guan W, Liu L S, Zhai P C, Tang X F, Zhang Q J 2007 Appl. Phys. Lett. 102 113708

    [5]

    Zhai P C, Zhao W Y, Li Y, Liu L S, Tang X F, Zhang Q J, Niino M 2006 Appl. Phys. Lett. 89 052111

    [6]

    Avila M A, Suekuni K, Umeo K, Fukuoka H, Yamanaka S, Takabatake T 2006 Phys. Rev. B 74 125109

    [7]

    Suekuni K, Avila M A, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T, Takabatake T 2008 Phys. Rev. B 77 235119

    [8]

    Huo D, Sakata T, Sasakawa T, Avila M A, Tsubota M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S, Takabatake T 2005 Phys. Rev. B 71 075113

    [9]

    Bentien A, Pacheco V, Paschen S, Grin Y, Steglich F 2005 Phys. Rev. B 71 165206

    [10]

    Phan M H, Woods G T, Chaturvedi A, Stefanoski S, Nolas G S, Srikant H 2008 Appl. Phys. Lett. 93 252505

    [11]

    Pacheco V, Bentien A, Carrillo-Cabrera W, Paschen S, Steglich F, Grin Y 2005 Phys. Rev. B 71 165205

    [12]

    Sasaki Y, Kishimoto K, Koyanagi T, Asada H, Akai K 2009 Appl. Phys. Lett. 105 073702

    [13]

    Kishimoto K, Ikeda N, Akai K, Koyanagi T 2008 Appl. Phys. Express 1 031201

    [14]

    Huo D, Sakata T, Sasakawa T, Avila M A, Tsubota M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S, Takabatake T 2005 Phys. Rev. B 71 075113

    [15]

    Xiong C, Tang X F, Qi Q, Deng S K, Zhang Q J 2006 Acta Phys. Sin. 55 6630 (in Chinese) [熊聪, 唐新峰, 祁琼, 邓书康, 张清杰 2006 物理学报 55 6630]

    [16]

    Huo D, Sakata T, Sasakawa T, Avila M A, Tsuboat M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S, Takabatake T 2005 Phys. Rev. B 71 075113

    [17]

    Deng S K 2008 Ph. D. Dissertation (Hubei: Wuhan University of Technology) (in Chinese) [邓书康 2008 博士学位论文(湖北: 武汉理工大学)]

    [18]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325

    [19]

    Nolas G S, Cohn J L, Slack G A, Schjuman S B 1998 Appl. Phys. Lett. 73 178

    [20]

    Kono Y, Ohya N, Taguchi T, Suekuni K, Takabatake T, Yamamoto S, Akai K 2010 J. Appl. Phys. 107 123720

    [21]

    Saiga Y, Suekuni K, Deng S K, Yamamoto T, Kono Y, Ohya N, Takabatake T 2010 J. Alloy. Compd. 507 1

    [22]

    Deng S K, Saiga Y, Kajisa K, Takabatake T 2011 J. Appl. Phys. 109 103704

    [23]

    Kishimoto K, Yamamoto H, Akai K, Koyanagi T 2012 J. Appl. Phys. 45 445306

    [24]

    Chen Y X, Du B L, Saiga Y, Kajisa K, Takabatake T 2013 J. Appl. Phys. 46 205302

    [25]

    Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 [熊聪, 邓书康, 唐新峰, 祁琼, 张清杰 2008 物理学报 57 1190]

    [26]

    Caillt T, Borahchevsky A, Fleurial J P 1997 Mater. Res. Soc. Symp. Proc. 478 103

  • [1]

    Slack G A 1995 CRC Handbook of Thermoelectrics CRC

    [2]

    Li H, Tang X F, Zhao W Y, Zhang Q J 2006 Acta Phys. Sin. 55 6506 (in Chinese) [李涵, 唐新峰, 赵文俞, 张清杰 2006 物理学报 55 6506]

    [3]

    Zhao W Y, Wei P, Zhang Q J, Dong C L, Liu L S, Tang X F 2009 J. Am. Chem. Soc. 131 3713

    [4]

    Zhao W Y, Dong C L, Wei P, Guan W, Liu L S, Zhai P C, Tang X F, Zhang Q J 2007 Appl. Phys. Lett. 102 113708

    [5]

    Zhai P C, Zhao W Y, Li Y, Liu L S, Tang X F, Zhang Q J, Niino M 2006 Appl. Phys. Lett. 89 052111

    [6]

    Avila M A, Suekuni K, Umeo K, Fukuoka H, Yamanaka S, Takabatake T 2006 Phys. Rev. B 74 125109

    [7]

    Suekuni K, Avila M A, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T, Takabatake T 2008 Phys. Rev. B 77 235119

    [8]

    Huo D, Sakata T, Sasakawa T, Avila M A, Tsubota M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S, Takabatake T 2005 Phys. Rev. B 71 075113

    [9]

    Bentien A, Pacheco V, Paschen S, Grin Y, Steglich F 2005 Phys. Rev. B 71 165206

    [10]

    Phan M H, Woods G T, Chaturvedi A, Stefanoski S, Nolas G S, Srikant H 2008 Appl. Phys. Lett. 93 252505

    [11]

    Pacheco V, Bentien A, Carrillo-Cabrera W, Paschen S, Steglich F, Grin Y 2005 Phys. Rev. B 71 165205

    [12]

    Sasaki Y, Kishimoto K, Koyanagi T, Asada H, Akai K 2009 Appl. Phys. Lett. 105 073702

    [13]

    Kishimoto K, Ikeda N, Akai K, Koyanagi T 2008 Appl. Phys. Express 1 031201

    [14]

    Huo D, Sakata T, Sasakawa T, Avila M A, Tsubota M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S, Takabatake T 2005 Phys. Rev. B 71 075113

    [15]

    Xiong C, Tang X F, Qi Q, Deng S K, Zhang Q J 2006 Acta Phys. Sin. 55 6630 (in Chinese) [熊聪, 唐新峰, 祁琼, 邓书康, 张清杰 2006 物理学报 55 6630]

    [16]

    Huo D, Sakata T, Sasakawa T, Avila M A, Tsuboat M, Iga F, Fukuoka H, Yamanaka S, Aoyagi S, Takabatake T 2005 Phys. Rev. B 71 075113

    [17]

    Deng S K 2008 Ph. D. Dissertation (Hubei: Wuhan University of Technology) (in Chinese) [邓书康 2008 博士学位论文(湖北: 武汉理工大学)]

    [18]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325

    [19]

    Nolas G S, Cohn J L, Slack G A, Schjuman S B 1998 Appl. Phys. Lett. 73 178

    [20]

    Kono Y, Ohya N, Taguchi T, Suekuni K, Takabatake T, Yamamoto S, Akai K 2010 J. Appl. Phys. 107 123720

    [21]

    Saiga Y, Suekuni K, Deng S K, Yamamoto T, Kono Y, Ohya N, Takabatake T 2010 J. Alloy. Compd. 507 1

    [22]

    Deng S K, Saiga Y, Kajisa K, Takabatake T 2011 J. Appl. Phys. 109 103704

    [23]

    Kishimoto K, Yamamoto H, Akai K, Koyanagi T 2012 J. Appl. Phys. 45 445306

    [24]

    Chen Y X, Du B L, Saiga Y, Kajisa K, Takabatake T 2013 J. Appl. Phys. 46 205302

    [25]

    Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 [熊聪, 邓书康, 唐新峰, 祁琼, 张清杰 2008 物理学报 57 1190]

    [26]

    Caillt T, Borahchevsky A, Fleurial J P 1997 Mater. Res. Soc. Symp. Proc. 478 103

  • [1] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [3] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [4] 孟代仪, 申兰先, 李德聪, 晒旭霞, 邓书康. Mg掺杂n型Sn基Ⅷ型单晶笼合物的结构及电传输特性. 物理学报, 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [5] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [6] 周龙, 李涵, 苏贤礼, 唐新峰. In掺杂对n型方钴矿化合物的微结构及热电性能的影响规律. 物理学报, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [7] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [8] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [9] 曹卫强, 鄢永高, 唐新峰. Yb/Sr双原子复合填充的I-型YbxSr8-xGa16Ge30笼合物的合成及热电性能. 物理学报, 2010, 59(1): 630-635. doi: 10.7498/aps.59.630
    [10] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [11] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性. 物理学报, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [12] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [13] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [14] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能. 物理学报, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [15] 蒋 俊, 李亚丽, 许高杰, 崔 平, 吴 汀, 陈立东, 王 刚. 制备工艺对p型碲化铋基合金热电性能的影响. 物理学报, 2007, 56(5): 2858-2862. doi: 10.7498/aps.56.2858
    [16] 邓书康, 唐新峰, 张清杰. Zn掺杂p型Ba8Ga16ZnxGe30-x笼合物的合成及热电性能. 物理学报, 2007, 56(8): 4983-4988. doi: 10.7498/aps.56.4983
    [17] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [18] 熊 聪, 唐新峰, 祁 琼, 邓书康, 张清杰. Ⅰ型锗基笼合物Ba8Ga16-xSbxGe30的合成及热电性能. 物理学报, 2006, 55(12): 6630-6636. doi: 10.7498/aps.55.6630
    [19] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能. 物理学报, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能. 物理学报, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  4453
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-03
  • 修回日期:  2013-09-27
  • 刊出日期:  2013-12-05

/

返回文章
返回